作者: I-Jeng Wang , E.K.P. Chong , R.W. Quong
关键词: Binary search algorithm 、 Worst-case complexity 、 Probabilistic logic 、 Algorithm 、 Mathematical optimization 、 Average-case complexity 、 Dynamic problem 、 Iterative deepening depth-first search 、 Probabilistic analysis of algorithms 、 Mathematics 、 Time complexity
摘要: Studies the sample complexity of a continuous binary search problem with probabilistic noise present in information. The authors derive general lower bound on and propose an algorithm that can solve arbitrary accuracy confidence. also give sufficient condition number samples for success algorithm. >