GPU parallelization of sequence segmentation using information theoretic models

作者: Luay Alawneh , Emad Rawashdeh , Mahmoud Al-Ayyoub , Yaser Jararweh

DOI: 10.1016/J.SIMPAT.2018.04.007

关键词: Time complexityImplementationComputer scienceInformation theoryCentral processing unitSegmentationSpeedupDynamic programmingMultithreadingParallel computing

摘要: Abstract Sequence segmentation has gained popularity in bioinformatics and particularly studying DNA sequences. Information theoretic models have been used providing accurate solutions the of Existing dynamic programming approaches provide optimal solution to problem. However, their quadratic time complexity prohibits applicability long In this paper, we propose a parallel approach improve performance quasilinear sequence algorithm. The target technique is divide-and-conquer recursive algorithm that based on information theory principles models. We present three implementations aim at reducing time. first implementation uses multithreading capabilities CPUs. second one hybrid utilizes synergy between CPU power GPUs. third variation where it concept unified memory GPU instead standard copy approach. demonstrate by testing them real sequences randomly generated with different lengths number unique elements. results show CPU-GPU outperforms sequential speedup up 5.9X while provides poor only 1.7X.

参考文章(39)
Evimaria Terzi, Panayiotis Tsaparas, Efficient Algorithms for Sequence Segmentation. siam international conference on data mining. pp. 316- 327 ,(2006)
Pawan Harish, P. J. Narayanan, Accelerating Large Graph Algorithms on the GPU Using CUDA High Performance Computing – HiPC 2007. pp. 197- 208 ,(2007) , 10.1007/978-3-540-77220-0_21
Ramesh Menon, Robit Chandra, Dave Kohr, Jeff McDonald, Dror Maydan, Leonardo Dagum, Parallel Programming in OpenMP ,(2000)
J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, H.T.T. Toivonen, Time series segmentation for context recognition in mobile devices international conference on data mining. pp. 203- 210 ,(2001) , 10.1109/ICDM.2001.989520
Nadia Nedjah, Rogério de M. Calazan, Luiza de Macedo Mourelle, Chao Wang, Parallel Implementations of the Cooperative Particle Swarm Optimization on Many-core and Multi-core Architectures International Journal of Parallel Programming. ,vol. 44, pp. 1173- 1199 ,(2016) , 10.1007/S10766-015-0368-3
Konstantin B. Tarmyshov, Florian Müller-Plathe, Parallelizing a Molecular Dynamics Algorithm on a Multiprocessor Workstation Using OpenMP Journal of Chemical Information and Modeling. ,vol. 45, pp. 1943- 1952 ,(2005) , 10.1021/CI050126L
Wentian Li, Thomas G. Marr, Kunihiko Kaneko, Understanding long-range correlations in DNA sequences Physica D: Nonlinear Phenomena. ,vol. 75, pp. 392- 416 ,(1994) , 10.1016/0167-2789(94)90294-1
Liang Jie, KenLi Li, Lin Shi, RangSu Liu, Jing Mei, Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA Journal of Computational Physics. ,vol. 257, pp. 521- 535 ,(2014) , 10.1016/J.JCP.2013.10.012
S. R. Sathe, D. D. Shrimankar, Parallelization of DNA sequence alignment using OpenMP Proceedings of the 2011 International Conference on Communication, Computing & Security - ICCCS '11. pp. 200- 203 ,(2011) , 10.1145/1947940.1947983
Wentian Li, The study of correlation structures of DNA sequences: a critical review. Computational Biology and Chemistry. ,vol. 21, pp. 257- 271 ,(1997) , 10.1016/S0097-8485(97)00022-3