Variational and density-matrix renormalization-group studies of the frustrated antiferromagnetic Heisenberg S=1 quantum spin chain

作者: A. Kolezhuk , R. Roth , U. Schollwöck

DOI: 10.1103/PHYSREVB.55.8928

关键词: Quantum mechanicsAntiferromagnetismRenormalization groupOrder (ring theory)Density matrix renormalization groupDegenerate energy levelsPhase transitionPhysicsAnsatzAKLT model

摘要: In this paper we study a frustrated antiferromagnetic isotropic Heisenberg S=1 quantum spin chain H=${\ensuremath{\sum}}_{\mathrm{i}}$${\mathbf{S}}_{\mathrm{i}}$${\mathbf{S}}_{\mathrm{i}+1}$+\ensuremath{\alpha}${\ensuremath{\sum}}_{\mathrm{i}}$${\mathbf{S}}_{\mathrm{i}}$${\mathbf{S}}_{\mathrm{i}+2}$, using variational ansatz starting from valence bond states and the density-matrix renormalization group. We find both methods to give results in very good qualitative quantitative agreement, which clarify phase diagram as follows: At ${\mathrm{\ensuremath{\alpha}}}_{\mathrm{D}}$=0.284(1), there is disorder point of first kind, marking onset incommensurate spin-spin correlations chain. ${\mathrm{\ensuremath{\alpha}}}_{\mathrm{L}}$=0.3725(25) Lifshitz point, at excitation spectrum found develop particular doubly degenerate structure. These points are remnants transition spiral order classical ${\mathrm{\ensuremath{\alpha}}}_{\mathrm{T}}$=0.7444(6) first-order an Affleck-Kennedy-Lieb-Tasaki (AKLT) characterized by nonvanishing string can be understood next-nearest-neighbor generalization AKLT model. transition, parameter shows (to numerical precision) discontinuous jump 0.085 zero; correlation length gap finite transition. The problem edge open chains discussed length.

参考文章(44)
D. Allen, D. Sénéchal, SEMICLASSICAL DESCRIPTION OF THE FRUSTRATED ANTIFERROMAGNETIC CHAIN Physical Review B. ,vol. 51, pp. 6394- 6401 ,(1995) , 10.1103/PHYSREVB.51.6394
John Stephenson, Range of order in antiferromagnets with next-nearest neighbor coupling Canadian Journal of Physics. ,vol. 48, pp. 2118- 2122 ,(1970) , 10.1139/P70-266
Marcel den Nijs, Koos Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Physical Review B. ,vol. 40, pp. 4709- 4734 ,(1989) , 10.1103/PHYSREVB.40.4709
Tom Kennedy, Hal Tasaki, Hidden Z 2 × Z 2 symmetry breaking in Haldane-gap antiferromagnets Physical Review B. ,vol. 45, pp. 304- 307 ,(1992) , 10.1103/PHYSREVB.45.304
S M Girvin, Daniel P Arovas, Hidden topological order in integer quantum spin chains Physica Scripta. ,vol. 1989, pp. 156- 159 ,(1989) , 10.1088/0031-8949/1989/T27/027
T Kennedy, Exact diagonalisations of open spin-1 chains Journal of Physics: Condensed Matter. ,vol. 2, pp. 5737- 5745 ,(1990) , 10.1088/0953-8984/2/26/010
U. Schollwöck, Th. Jolicœur, T. Garel, Onset of incommensurability at the valence-bond-solid point in theS=1 quantum spin chain Physical Review B. ,vol. 53, pp. 3304- 3311 ,(1996) , 10.1103/PHYSREVB.53.3304
T Garel, J M Maillard, RPA approach to disorder points Journal of Physics C: Solid State Physics. ,vol. 19, ,(1986) , 10.1088/0022-3719/19/23/001
Sudip Chakravarty, Bertrand I. Halperin, David R. Nelson, Low-temperature behavior of two-dimensional quantum antiferromagnets Physical Review Letters. ,vol. 60, pp. 1057- 1060 ,(1988) , 10.1103/PHYSREVLETT.60.1057