作者: Carleton Coffrin , Pascal Van Hentenryck
关键词: Flow (mathematics) 、 Relaxation (iterative method) 、 Power-flow study 、 Control theory 、 AC power 、 Electric power system 、 Nonlinear system 、 Mathematical optimization 、 Power factor 、 Voltage optimisation 、 Mathematics
摘要: Linear active-power-only power flow approximations are pervasive in the planning and control of systems. However, AC systems governed by a system nonlinear nonconvex equations. Existing linear fail to capture key variables, including reactive voltage magnitudes, both which necessary many applications that require management feasibility. This paper proposes novel linear-programming models (the LPAC models) incorporate magnitudes approximation. The built on polyhedral relaxation cosine terms equations as well Taylor remaining terms. Experimental comparisons with solutions variety standard IEEE Matpower benchmarks show produce accurate values for active power, phase angles, magnitudes. potential benefits model...