Error estimates for optimal control problems of a class of quasilinear equations arising in variable viscosity fluid flow

作者: Juan Carlos De Los Reyes , Vili Dhamo

DOI: 10.1007/S00211-015-0737-2

关键词: Finite element methodOptimal controlNumerical analysisMathematical analysisFréchet derivativeMonotone polygonOperator (computer programming)Variable (mathematics)MathematicsFluid dynamicsApplied mathematicsComputational mathematics

摘要: We consider optimal control problems of quasilinear elliptic equations with gradient coefficients arising in variable viscosity fluid flow. The state equation is monotone and the controls are distributed type. prove that control-to-state operator twice Frechet differentiable for this class equations. A finite element approximation studied an estimate order h obtained control. result makes use structure controls, together a regularity Holder second sufficient optimality condition. paper ends numerical experiment, where computationally tested.

参考文章(35)
E. Giusti, M. Giaquinta, Global C...-regularity for second order quasilinear elliptic euqations in divergence form. Crelle's Journal. ,vol. 351, pp. 55- 65 ,(1984)
Juan Carlos De los Reyes, Numerical PDE-Constrained Optimization ,(2015)
D. R. Smart, Fixed point theorems ,(1974)
Pierre Arnaud Raviart, Jean-Marie Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles Masson. ,(1983)
E. Casas, F. Troeltzsch, Error estimates for the finite-element approximation of a semilinear elliptic control problem Control and Cybernetics. ,vol. 31, pp. 695- 712 ,(2002)
Boris Vexler, Juan Carlos de Los Reyes, Christian Meyer, Finite element error analysis for state-constrained optimal control of the Stokes equations Control and Cybernetics. ,vol. 37, pp. 251- 284 ,(2008)