作者: Juan Carlos De Los Reyes , Vili Dhamo
DOI: 10.1007/S00211-015-0737-2
关键词: Finite element method 、 Optimal control 、 Numerical analysis 、 Mathematical analysis 、 Fréchet derivative 、 Monotone polygon 、 Operator (computer programming) 、 Variable (mathematics) 、 Mathematics 、 Fluid dynamics 、 Applied mathematics 、 Computational mathematics
摘要: We consider optimal control problems of quasilinear elliptic equations with gradient coefficients arising in variable viscosity fluid flow. The state equation is monotone and the controls are distributed type. prove that control-to-state operator twice Frechet differentiable for this class equations. A finite element approximation studied an estimate order h obtained control. result makes use structure controls, together a regularity Holder second sufficient optimality condition. paper ends numerical experiment, where computationally tested.