Equivalent Goppa codes and trapdoors to McEliece's public key cryptosystem

作者: J. K. Gibson

DOI: 10.1007/3-540-46416-6_46

关键词: McEliece cryptosystemEquivalence relationMathematicsPublic key cryptosystemCombinatoricsGoppa codeDiscrete mathematicsMonic polynomialFinite field

摘要: We show that contrary to a published statement, any instance of McEliece's Public Key Cryptosystem always has many trapdoors. Our proof leads natural equivalence relation on monic polynomials over finite field F such two irreducible Goppa codes whose are equivalent under this as codes.

参考文章(8)
Valery I. Korzhik, Andrey I. Turkin, Cryptanalysis of McEliece's public-key cryptosystem theory and application of cryptographic techniques. pp. 68- 70 ,(1991) , 10.1007/3-540-46416-6_5
P. J. Lee, E. F. Brickell, An observation on the security of McEliece's public-key cryptosystem theory and application of cryptographic techniques. pp. 275- 280 ,(1988) , 10.1007/3-540-45961-8_25
Florence Jessie MacWilliams, Neil James Alexander Sloane, The Theory of Error-Correcting Codes ,(1977)
Ernest F. Brickell, Breaking iterated knapsacks international cryptology conference. pp. 342- 358 ,(1985) , 10.1007/3-540-39568-7_27
E. M. Gabidulin, A. V. Paramonov, O. V. Tretjakov, Ideals over a non-commutative ring and their application in cryptology theory and application of cryptographic techniques. pp. 482- 489 ,(1991) , 10.1007/3-540-46416-6_41
Johan van Tilburg, On the McEliece Public-Key Cryptosystem international cryptology conference. pp. 119- 131 ,(1988) , 10.1007/0-387-34799-2_10
Carlisle M. Adams, Henk Meijer, Security-Related Comments Regarding McEliece's Public-Key Cryptosystem international cryptology conference. ,vol. 35, pp. 224- 228 ,(1987) , 10.1007/3-540-48184-2_20
R. J. McEliece, A Public-Key Cryptosystem Based On Algebraic Coding Theory Deep Space Network Progress Report. ,vol. 44, pp. 114- 116 ,(1978)