作者: Xiaoqing Wu , , Yinghui Shan , Jianguo Gao
DOI: 10.3934/MBE.2020378
关键词: Constant (mathematics) 、 Mathematics 、 Exponential stability 、 Advection 、 Diffusion (business) 、 Lyapunov function 、 Steady state 、 Work (thermodynamics) 、 Pure mathematics 、 Stability theory
摘要: This note gives a supplement to the recent work of Wang and (2019) in sense that: (ⅰ) for critical case where $\Re_{0} = 1$, cholera-free steady state is globally asymptotically stable; (ⅱ) homogeneous case, positive constant steady-state stable with additional condition when $\Re_{0}>1$. Our first result achieved by proving local asymptotic stability global attractivity. second obtained Lyapunov function.