Problème de Neumann faible avec condition frontière dans Ł1

作者: Josef Král

DOI: 10.1007/BFB0085777

关键词: Mathematics

摘要:

参考文章(13)
L. C. Young, A Theory of Boundary Values† Proceedings of the London Mathematical Society. ,vol. s3-14A, pp. 300- 314 ,(1965) , 10.1112/PLMS/S3-14A.1.300
J. Král, Boundary regularity and normal derivatives of logarithmic potentials Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 106, pp. 241- 258 ,(1987) , 10.1017/S0308210500018394
Herbert Federer, The Gauss-Green theorem Transactions of the American Mathematical Society. ,vol. 58, pp. 44- 76 ,(1945) , 10.1090/S0002-9947-1945-0013786-6
J. Hadamard, Paul Levy, T. H. Hildebrandt, Leçons D'Analyse Fonctionnelle ,(2009)
Josef Král, Wolfgang Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential theory Applications of Mathematics. ,vol. 31, pp. 293- 308 ,(1986) , 10.21136/AM.1986.104208
Ivan Netuka, The third boundary value problem in potential theory Czechoslovak Mathematical Journal. ,vol. 22, pp. 554- 580 ,(1972) , 10.21136/CMJ.1972.101126
Ivan Netuka, Generalized Robin problem in potential theory Czechoslovak Mathematical Journal. ,vol. 22, pp. 312- 324 ,(1972) , 10.21136/CMJ.1972.101100
Ralph Ellis Kleinman, Thomas S. Angell, Josef Král, Double layer potentials on boundaries with corners and edges Commentationes Mathematicae Universitatis Carolinae. ,vol. 027, pp. 419- 419 ,(1986)
Laurent Schwartz, Théorie des distributions ,(1966)