Discrimination of epileptic events using EEG rhythm decomposition

作者: L. Duque-Muñoz , L. D Avendaño-Valencia , G. Castellanos-Domínguez

DOI: 10.1007/978-3-642-21326-7_47

关键词: Spectral densityFrequency bandPattern recognitionDimensionality reductionParametric statisticsArtificial intelligenceSpectral spacePrincipal component analysisAutoregressive modelMachine learningComputer scienceWavelet

摘要: The use of time series decomposition into sub-bands frequency to accomplish the oscillation modes in nonstationary signals is proposed. Specifically, EEG are decomposed subbands, and most relevant them employed for detection epilepsy seizures. Since computation carried out based on Time-Variant Autoregressive model parameters, both approaches searching an optimal order studied: estimation over entire database, each database recording. feature set appraises parametric power spectral density band models. Developed dimension reduction approach high dimensional space that principal component analysis searches bands holding higher values relevance, terms performed accuracy detection. Attained outcomes k-nn classifier 29 patients reach a as 95% As result, proposed methodology provides performance when used signal. advantage interpretations may lead data, since mode can be associated with one eeg rhythms.

参考文章(10)
P. Stoica, Y. Selen, Model-order selection: a review of information criterion rules IEEE Signal Processing Magazine. ,vol. 21, pp. 36- 47 ,(2004) , 10.1109/MSP.2004.1311138
Mike West, Raquel Prado, Andrew D. Krystal, Evaluation and Comparison of EEG Traces: Latent Structure in Nonstationary Time Series Journal of the American Statistical Association. ,vol. 94, pp. 1083- 1095 ,(1999) , 10.1080/01621459.1999.10473861
L. D. Avendaño-Valencia, J. I. Godino-Llorente, M. Blanco-Velasco, G. Castellanos-Dominguez, Feature extraction from parametric time-frequency representations for heart murmur detection. Annals of Biomedical Engineering. ,vol. 38, pp. 2716- 2732 ,(2010) , 10.1007/S10439-010-0077-4
Thalía Fernández, Thalía Harmony, Mario Rodríguez, Jorge Bernal, Juan Silva, Alfonso Reyes, Erzsébet Marosi, EEG activation patterns during the performance of tasks involving different components of mental calculation Electroencephalography and Clinical Neurophysiology. ,vol. 94, pp. 175- 182 ,(1995) , 10.1016/0013-4694(94)00262-J
Ralph G. Andrzejak, Florian Mormann, Guido Widman, Thomas Kreuz, Christian E. Elger, Klaus Lehnertz, Improved spatial characterization of the epileptic brain by focusing on nonlinearity. Epilepsy Research. ,vol. 69, pp. 30- 44 ,(2006) , 10.1016/J.EPLEPSYRES.2005.12.004
A.T. Tzallas, M.G. Tsipouras, D.I. Fotiadis, Epileptic Seizure Detection in EEGs Using Time–Frequency Analysis international conference of the ieee engineering in medicine and biology society. ,vol. 13, pp. 703- 710 ,(2009) , 10.1109/TITB.2009.2017939
Hojjat Adeli, Ziqin Zhou, Nahid Dadmehr, Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods. ,vol. 123, pp. 69- 87 ,(2003) , 10.1016/S0165-0270(02)00340-0
Ki-Young Jung, Joong-Koo Kang, Ji Hyun Kim, Chang-Hwan Im, Kyung Hwan Kim, Hyun-Kyo Jung, Spatiotemporospectral characteristics of scalp ictal EEG in mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Research. ,vol. 1287, pp. 206- 219 ,(2009) , 10.1016/J.BRAINRES.2009.06.071
A.J. Niemiec, B.J. Lithgow, Alpha-band characteristics in EEG spectrum indicate reliability of frontal brain asymmetry measures in diagnosis of depression. international conference of the ieee engineering in medicine and biology society. ,vol. 2005, pp. 7517- 7520 ,(2005) , 10.1109/IEMBS.2005.1616251
P. Herman, G. Prasad, T.M. McGinnity, D. Coyle, Comparative Analysis of Spectral Approaches to Feature Extraction for EEG-Based Motor Imagery Classification international conference of the ieee engineering in medicine and biology society. ,vol. 16, pp. 317- 326 ,(2008) , 10.1109/TNSRE.2008.926694