Representation of a gauge field via intrinsic “BRST” operator

作者: Igor A. Batalin , Peter M. Lavrov

DOI: 10.1016/J.PHYSLETB.2015.09.033

关键词: Gauge symmetryGauge fixingIntroduction to gauge theoryQuantum electrodynamicsGauge covariant derivativeMathematical physicsSupersymmetric gauge theoryBRST quantizationPhysicsYang–Mills theoryQuantum gauge theory

摘要: Abstract We show that there exists a representation of matrix-valued gauge field via intrinsic “BRST” operator assigned to generators algebra. In this way, we reproduce the standard formulation ordinary Yang–Mills theory. case generating quasigroup/groupoid, give natural counterpart action. The latter does also apply as most general an involution for generators.

参考文章(36)
Taichiro Kugo, Izumi Ojima, Local Covariant Operator Formalism of Non-Abelian Gauge Theories and Quark Confinement Problem Progress of Theoretical Physics Supplement. ,vol. 66, pp. 1- 130 ,(1979) , 10.1143/PTPS.66.1
A. A. Slavnov, Ward identities in gauge theories Theoretical and Mathematical Physics. ,vol. 10, pp. 99- 104 ,(1972) , 10.1007/BF01090719
J.C. Taylor, Ward identities and charge renormalization of the Yang-Mills field Nuclear Physics. ,vol. 33, pp. 436- 444 ,(1971) , 10.1016/0550-3213(71)90297-5
C. Becchi, A. Rouet, R. Stora, The abelian Higgs Kibble model, unitarity of the S-operator Physics Letters B. ,vol. 52, pp. 344- 346 ,(1974) , 10.1016/0370-2693(74)90058-6
Theodore Voronov, Higher derived brackets and homotopy algebras Journal of Pure and Applied Algebra. ,vol. 202, pp. 133- 153 ,(2005) , 10.1016/J.JPAA.2005.01.010
Bryce S. DeWitt, Quantum Theory of Gravity. II. The Manifestly Covariant Theory Physical Review. ,vol. 162, pp. 1195- 1239 ,(1967) , 10.1103/PHYSREV.162.1195
�. Sh. Egoryan, R. P. Manvelyan, Quantization of dynamical systems with first and second class constraints Theoretical and Mathematical Physics. ,vol. 94, pp. 173- 181 ,(1993) , 10.1007/BF01019329
C. Mayer, T. Strobl, Lie Algebroid Yang–Mills with matter fields Journal of Geometry and Physics. ,vol. 59, pp. 1613- 1623 ,(2009) , 10.1016/J.GEOMPHYS.2009.07.018