Some asymptotic inference in quasi-likelihood nonlinear models: A geometric approach

作者: Wei Bocheng , Tang Niansheng , Wang Xueren

DOI: 10.1007/S11766-000-0024-5

关键词: Quasi-likelihoodMathematicsApplied mathematicsNonlinear systemInner product spaceNonlinear regressionExponential familyInferenceMathematical optimizationEuclidean geometryVariance (accounting)

摘要: A modified Bates and Watts geometric framework is proposed for quasi-likelihood nonlinear models in Euclidean inner product space. Based on the framework, some asymptotic inference terms of curvatures studied. Several previous results regression exponential family etc. are extended to models.

参考文章(14)
P. J. Cheek, P. McCullagh, J. A. Nelder, Generalized Linear Models, 2nd Edn. Applied Statistics. ,vol. 39, pp. 385- 386 ,(1990) , 10.2307/2347392
Douglas M. Bates, Donald G. Watts, Relative Curvature Measures of Nonlinearity Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 42, pp. 1- 16 ,(1980) , 10.1111/J.2517-6161.1980.TB01094.X
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
Bo-Cheng Wei, SOME SECOND ORDER ASYMPTOTICS IN NONLINEAR REGRESSION Australian & New Zealand Journal of Statistics. ,vol. 33, pp. 75- 84 ,(1991) , 10.1111/J.1467-842X.1991.TB00414.X
Jeng-Min Chiou, Hans-Georg Müller, Quasi-Likelihood Regression with Unknown Link and Variance Functions Journal of the American Statistical Association. ,vol. 93, pp. 1376- 1387 ,(1998) , 10.1080/01621459.1998.10473799
FU CHIEN, None, Asymptotic Theory of Nonlinear Least Squares Estimation Annals of Statistics. ,vol. 9, pp. 501- 513 ,(1981) , 10.1214/AOS/1176345455