Formulas for the pressure and bulk modulus in uniaxial strain

作者: Mike Scheidler

DOI: 10.1063/1.50681

关键词: Pressure measurementModuliClassical mechanicsBulk modulusMaterials scienceShear modulusHydrostatic pressureShock waveThermodynamicsIsotropyHydrostatic stress

摘要: For an isotropic elastic solid, the pressure p=pu(ρ) in a state of uniaxial strain at density ρ generally differs from p=ph(ρ) hydrostatic stress same density. Several researchers have used pressure/shear (or oblique plate impact) tests to determine pu and corresponding bulk modulus Ku≡ρdpu/dρ. The yield longitudinal shear moduli, Lu Gu, as function ρ. A common procedure is integrate approximate relation Ku≈Lu−43Gu obtain pressure-density strain. It shown here that integration this between moduli can be avoided altogether by utilizing exact formula pu=σ1−23((ρ/ρ0)2−1)Gu, where σ1 denotes (pos. compression). Ku computed exactly formula, error approximating it Lu−43Gu determined.

参考文章(6)
C. Truesdell, C.C. Wang, Introduction to Rational Elasticity ,(1973)
A. S. Abou‐Sayed, R. J. Clifton, Pressure shear waves in fused silica Journal of Applied Physics. ,vol. 47, pp. 1762- 1770 ,(1976) , 10.1063/1.322888
John B. Aidun, Y. M. Gupta, Shear wave measurements for improved characterization of shock‐Induced phase transformations in Carrara marble Geophysical Research Letters. ,vol. 16, pp. 191- 194 ,(1989) , 10.1029/GL016I002P00191
L. Davison, Propagation of plane waves of finite amplitude in elastic solids Journal of the Mechanics and Physics of Solids. ,vol. 14, pp. 249- 270 ,(1966) , 10.1016/0022-5096(66)90022-6
Y. M. Gupta, Determination of the impact response of PMMA using combined compression and shear loading Journal of Applied Physics. ,vol. 51, pp. 5352- 5361 ,(1980) , 10.1063/1.327450
C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics Handbuch der Physik. ,vol. 2, pp. 1- 541 ,(1965) , 10.1007/978-3-642-46015-9_1