作者: HERVÉ MOULIN
DOI: 10.1016/B978-0-12-370182-4.50020-9
关键词: Production set 、 Upper and lower bounds 、 Lattice (order) 、 Special case 、 Axiom 、 Mathematics 、 Rationality 、 Monotonic function 、 Common-pool resource 、 Mathematical optimization 、 Mathematical economics
摘要: Publisher Summary This chapter discusses monotonic surplus sharing and the utilization of common property resources. It problems akin to axiomatic bargaining. Cooperative opportunities are depicted by a set feasible utility vectors. An individual rationality (IR) constraint sets lower bound on every level. Unlike traditional Nash model, depend upon an exogenous parameter, affecting both constraint. The defines monotonicity axiom when parameters is partially ordered. important special case where mapping from resource parameter into vectors satisfies certain lattice homomorphism property. Examples include models production set. Under property, solidarity axioms prove be equivalent existence monotonie method easy characterize.