Hierarchical Bayesian Networks: An Approach to Classification and Learning for Structured Data

作者: Elias Gyftodimos , Peter A. Flach

DOI: 10.1007/978-3-540-24674-9_31

关键词: Bayesian probabilityArtificial intelligenceBayesian networkConditional probability tableMachine learningNode (computer science)Computer scienceData modelingData miningInference

摘要: Bayesian Networks are one of the most popular formalisms for reasoning under uncertainty. Hierarchical (HBNs) an extension that able to deal with structured domains, using knowledge about structure data introduce a bias can contribute improving inference and learning methods. In effect, nodes in HBN (possibly nested) aggregations simpler nodes. Every aggregate node is itself modelling independences inside subset whole world consideration. this paper we discuss how HBNs be used as classifiers domains. We also further extended model more complex structures, such lists or sets, present results preliminary experiments on mutagenesis dataset.

参考文章(21)
Nicolas Lachiche, Peter A. Flach, Elias Gyftodimos, Probabilistic reasoning with terms ,(2003)
James Cussens, Parameter Estimation in Stochastic Logic Programs Machine Learning. ,vol. 44, pp. 245- 271 ,(2001) , 10.1023/A:1010924021315
Ashutosh Garg, Dan Roth, Understanding Probabilistic Classifiers european conference on machine learning. pp. 179- 191 ,(2001) , 10.1007/3-540-44795-4_16
John W. Lloyd, Higher-Order Computational Logic Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part I. pp. 105- 137 ,(2002) , 10.1007/3-540-45628-7_6
Avi Pfeffer, Daphne Koller, Object-oriented Bayesian networks uncertainty in artificial intelligence. pp. 302- 313 ,(1997)
Daphne Koller, Probabilistic Relational Models inductive logic programming. pp. 3- 13 ,(1999) , 10.1007/3-540-48751-4_1
Nicolas Lachiche, Peter A. Flach, 1BC2: a true first-order Bayesian classifier inductive logic programming. pp. 133- 148 ,(2002) , 10.1007/3-540-36468-4_9
Luc De Raedt, Kristian Kersting, Bayesian Logic Programs inductive logic programming. pp. 1- 18 ,(2001)
Nir Friedman, Dan Geiger, Moises Goldszmidt, Bayesian Network Classifiers Machine Learning. ,vol. 29, pp. 131- 163 ,(1997) , 10.1023/A:1007465528199
Kristian Kersting, Luc De Raedt, Adaptive Bayesian Logic Programs inductive logic programming. ,vol. 2157, pp. 104- 117 ,(2001) , 10.1007/3-540-44797-0_9