How beta-skeletons lose their edges

作者: Andrew Adamatzky

DOI:

关键词: PlanarDiscrete mathematicsNeighbourhood (graph theory)CombinatoricsMathematicsLune

摘要: A {\beta}-skeleton is a proximity graphs with node neighbourhood defined by continuous-valued parameter {\beta}. Two nodes in are connected an edge if their lune-based contains no other nodes. With increase of {\beta} some edges skeleton disappear. We study how number depends on speculate this dependence can be used to discriminate between random and non-random planar sets. also analyse stability {\beta}-skeletons sensitivity perturbations.

参考文章(19)
Jean-Michel Billiot, Eric Fontenas, Franck Corset, Continuum Percolation in the Relative Neighborhood Graph arXiv: Mathematical Physics. ,(2010)
David G. Kirkpatrick, John D. Radke, A Framework for Computational Morphology Machine Intelligence and Pattern Recognition. ,vol. 2, pp. 217- 248 ,(1985) , 10.1016/B978-0-444-87806-9.50013-X
Andrew Adamatzky, Anne VDM Kayem, None, Biological evaluation of Trans-African highways European Physical Journal-special Topics. ,vol. 215, pp. 49- 59 ,(2013) , 10.1140/EPJST/E2013-01714-6
K. Ruben Gabriel, Robert R. Sokal, A New Statistical Approach to Geographic Variation Analysis Systematic Biology. ,vol. 18, pp. 259- 278 ,(1969) , 10.2307/2412323
Adam Runions, Martin Fuhrer, Brendan Lane, Pavol Federl, Anne-Gaëlle Rolland-Lagan, Przemyslaw Prusinkiewicz, Modeling and visualization of leaf venation patterns international conference on computer graphics and interactive techniques. ,vol. 24, pp. 702- 711 ,(2005) , 10.1145/1073204.1073251
Zoltán Toroczkai, Hasan Guclu, Proximity networks and epidemics Physica A-statistical Mechanics and Its Applications. ,vol. 378, pp. 68- 75 ,(2007) , 10.1016/J.PHYSA.2006.11.088
Paul M. Magwene, Using Correlation Proximity Graphs to Study Phenotypic Integration Evolutionary Biology-new York. ,vol. 35, pp. 191- 198 ,(2008) , 10.1007/S11692-008-9030-Y
Nina Amenta, Marshall Bern, David Eppstein, The crust and the B-Skeleton: combinatorial curve reconstruction Graphical Models and Image Processing. ,vol. 60, pp. 125- 135 ,(1998) , 10.1006/GMIP.1998.0465