Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

作者:

DOI: 10.1063/1.4861382

关键词: Atmospheric pressureExcitationHigh voltageAtomic physicsAtmospheric-pressure plasmaPulse generatorElectric potentialPlasmaRadiusChemistry

摘要: Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale is always a challenging issue. This paper discusses analyses the formation mechanism cold homogenous plasma. It proposed that stable atmospheric open should meet three conditions: high transient power with low average power, excitation E-field locally region, multiple overlapping electron avalanches. Accordingly, an experimental configuration barrier-free designed. Based on runaway theory, duty-ratio, voltage repetitive nanosecond pulse generator chosen as discharge source. Using wire-electrodes small curvature radius, gaps highly non-uniform are structured. Experimental results show volume-scaleable, barrier-free, homogeneous non-thermal been obtained between gap spacing copper-wire electrodes. The area has up to hundreds square centimeters. conditions proved be reasonable feasible.

参考文章(25)
Ulrich Kogelschatz, Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications Plasma Chemistry and Plasma Processing. ,vol. 23, pp. 1- 46 ,(2003) , 10.1023/A:1022470901385
S Kanazawa, M Kogoma, T Moriwaki, S Okazaki, Stable glow plasma at atmospheric pressure Journal of Physics D. ,vol. 21, pp. 838- 840 ,(1988) , 10.1088/0022-3727/21/5/028
Rami Ben Gadri, J.Reece Roth, Thomas C. Montie, Kimberly Kelly-Wintenberg, Peter P.-Y. Tsai, Dennis J. Helfritch, Paul Feldman, Daniel M. Sherman, Fuat Karakaya, Zhiyu Chen, Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP) Surface & Coatings Technology. ,vol. 131, pp. 528- 541 ,(2000) , 10.1016/S0257-8972(00)00803-3
D. S. Nikandrov, Low-frequency dielectric-barrier discharge in the Townsend mode Technical Physics. ,vol. 50, pp. 1284- 1294 ,(2005) , 10.1134/1.2103273
Victor F. Tarasenko, Evgeni Kh. Baksht, Mikhail V. Erofeev, Yuliya V. Shutko, Diffuse discharge produced by repetitive nanosecond pulses in open air, nitrogen, and helium Journal of Applied Physics. ,vol. 113, pp. 093301- ,(2013) , 10.1063/1.4794031
D Trunec, A Brablec, J Buchta, Atmospheric pressure glow discharge in neon Journal of Physics D. ,vol. 34, pp. 1697- 1699 ,(2001) , 10.1088/0022-3727/34/11/322
A.V. Gurevich, G.M. Milikh, R. Roussel-Dupre, Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm Physics Letters A. ,vol. 165, pp. 463- 468 ,(1992) , 10.1016/0375-9601(92)90348-P
F Massines, N Gherardi, N Naudé, P Ségur, Glow and Townsend dielectric barrier discharge in various atmosphere Plasma Physics and Controlled Fusion. ,vol. 47, ,(2005) , 10.1088/0741-3335/47/12B/S42
Zhi-jie Liu, Wen-chun Wang, De-zheng Yang, Shuai Zhang, Yang Yang, Kai Tang, The effect of dielectric thickness on diffuse nanosecond dielectric barrier discharges using a needle array-plate electrode configuration in air at atmospheric pressure Journal of Applied Physics. ,vol. 113, pp. 233305- 233305 ,(2013) , 10.1063/1.4811293
Françoise Massines, Nicolas Gherardi, Antonella Fornelli, Steve Martin, Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge Surface & Coatings Technology. ,vol. 200, pp. 1855- 1861 ,(2005) , 10.1016/J.SURFCOAT.2005.08.010