The generalized Borwein conjecture. I. The Burge transform

作者: S. Ole Warnaar

DOI:

关键词: ConjectureIdentity (mathematics)CombinatoricsMathematicsCoprime integersOrdered pairBinary treeDiscrete mathematicsProduct (mathematics)Tree (set theory)Type (model theory)

摘要: Given an arbitrary ordered pair of coprime integers (a,b) we obtain a identities the Rogers--Ramanujan type. These have same product side as (first) Andrews--Gordon identity for modulus 2ab\pm 1, but altogether different sum side, based on representation (a/b-1)^{\pm 1} continued fraction. Our proof, which relies Burge transform, first establishes binary tree polynomial identities. Each in this settles special case Bressoud's generalized Borwein conjecture.

参考文章(20)
David A. Bressoud, The Borwein Conjecture and Partitions with Prescribed Hook Differences Electronic Journal of Combinatorics. ,vol. 3, pp. 4- ,(1995) , 10.37236/1262
Alexander Berkovich, Barry M. McCoy, Anne Schilling, Rogers-Schur-Ramanujan Type Identities for the M(p,p') Minimal Models of Conformal Field Theory Communications in Mathematical Physics. ,vol. 191, pp. 325- 395 ,(1998) , 10.1007/S002200050271
DAVID M. BRESSOUD, AN ANALYTIC GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES WITH INTERPRETATION Quarterly Journal of Mathematics. ,vol. 31, pp. 385- 399 ,(1980) , 10.1093/QMATH/31.4.385
G. E. Andrews, An Analytic Generalization of the Rogers-Ramanujan Identities for Odd Moduli Proceedings of the National Academy of Sciences of the United States of America. ,vol. 71, pp. 4082- 4085 ,(1974) , 10.1073/PNAS.71.10.4082
Peter Paule, On identities of the Rogers-Ramanujan type Journal of Mathematical Analysis and Applications. ,vol. 107, pp. 255- 284 ,(1985) , 10.1016/0022-247X(85)90368-3
L. J. Slater, Further Identities of the Rogers‐Ramanujan Type Proceedings of The London Mathematical Society. pp. 147- 167 ,(1952) , 10.1112/PLMS/S2-54.2.147
George E. Andrews, R.J. Baxter, D.M. Bressoud, W.H. Burge, P.J. Forrester, G. Viennot, Partitions with prescribed hook differences The Journal of Combinatorics. ,vol. 8, pp. 341- 350 ,(1987) , 10.1016/S0195-6698(87)80041-0
George Gasper, Mizan Rahman, Basic Hypergeometric Series ,(1990)
L. J. Rogers, Second Memoir on the Expansion of certain Infinite Products Proceedings of the London Mathematical Society. ,vol. s1-25, pp. 318- 343 ,(1893) , 10.1112/PLMS/S1-25.1.318
Alexander Berkovich, Barry M. McCoy, Continued fractions and fermionic representations for characters of M(p,p′) minimal models Letters in Mathematical Physics. ,vol. 37, pp. 49- 66 ,(1996) , 10.1007/BF00400138