Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic Fuzzy Implications

作者: Robert Nowicki

DOI: 10.1007/978-3-540-24844-6_76

关键词: Fuzzy subalgebraRough setType-2 fuzzy sets and systemsFuzzy logicFuzzy numberFuzzy classificationArtificial intelligenceFuzzy control systemFuzzy set operationsFuzzy setComputer scienceNeuro-fuzzyFuzzy associative matrixFuzzy mathematicsMembership functionDefuzzification

摘要: In this paper we presented a general solution to compose rough-neuro-fuzzy architectures. Monotonic properties of fuzzy implications were assumed derive systems in the case missing features. The satisfying Fodor’s lemma used logical approach and t-norms Mamdani are discussed.

参考文章(13)
Robert Nowicki, Leszek Rutkowski, Rough-Neuro-Fuzzy System for Classification. fuzzy systems and knowledge discovery. pp. 463- 466 ,(2002)
Ernest· Czoga 盿, Jacek Leski, None, Fuzzy and Neuro-Fuzzy Intelligent Systems ,(2000)
R. Nowicki, D. Rutkowska, Implication-Based Neuro-Fuzzy Architectures International Journal of Applied Mathematics and Computer Science. ,vol. 10, pp. 675- 701 ,(2000)
Frank Klawonn, Rudolf Kruse, Detlef Nauck, Foundations of neuro-fuzzy systems ,(1997)
DIDIER DUBOIS, HENRI PRADE, ROUGH FUZZY SETS AND FUZZY ROUGH SETS International Journal of General Systems. ,vol. 17, pp. 191- 209 ,(1990) , 10.1080/03081079008935107
Zdzisław Pawlak, Rough sets, decision algorithms and Bayes' theorem European Journal of Operational Research. ,vol. 136, pp. 181- 189 ,(2002) , 10.1016/S0377-2217(01)00029-7
K. Cpalka, L. Rutkowski, Flexible neuro-fuzzy systems ,(2004)
KEON-MYUNG LEE, DONG-HOON KWANG, HYUNG LEEK WANG, A FUZZY NEURAL NETWORK MODEL FOR FUZZY INFERENCE AND RULE TUNING International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. ,vol. 02, pp. 265- 277 ,(1994) , 10.1142/S0218488594000213