Multi-object segmentation of head bones

作者: Dagmar Kainmueller , Hans Lamecker , Stefan Zachow , Heiko Seim

DOI:

关键词: HeuristicObject (computer science)Graph (abstract data type)SkullSegmentationFocus (optics)Computer scienceComputer visionBoundary (topology)MandibleArtificial intelligence

摘要: We present a fully automatic method for 3D segmentation of the mandibular bone from CT data. The includes an adaptation statistical shape models mandible, skull base and midfacial bones, followed by simultaneous graph-based optimization adjacent deformable models. to image data is performed according heuristic model typical intensity distribution in vincinity boundary, with special focus on accurate discrimination bones joint regions. An evaluation our based 18 scans shows that manual correction segmentations not necessary approx. 60% axial slices contain mandible.

参考文章(18)
Sylvia Rueda, José Antonio Gil, Raphaël Pichery, Mariano Alcañiz, Automatic Segmentation of Jaw Tissues in CT Using Active Appearance Models and Semi-automatic Landmarking Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. ,vol. 9, pp. 167- 174 ,(2006) , 10.1007/11866565_21
Hans Lamecker, Martin Seebass, Hans-Christian Hege, Peter Deuflhard, A 3D statistical shape model of the pelvic bone for segmentation Medical Imaging 2004: Image Processing. ,vol. 5370, pp. 1341- 1351 ,(2004) , 10.1117/12.534145
Stefan Zachow, Hans Lamecker, Barbara Elsholtz, Michael Stiller, Reconstruction of mandibular dysplasia using a statistical 3D shape model International Congress Series. ,vol. 1281, pp. 1238- 1243 ,(2005) , 10.1016/J.ICS.2005.03.339
Tobias Klinder, Jörn Ostermann, Matthias Ehm, Astrid Franz, Reinhard Kneser, Cristian Lorenz, Automated model-based vertebra detection, identification, and segmentation in CT images. Medical Image Analysis. ,vol. 13, pp. 471- 482 ,(2009) , 10.1016/J.MEDIA.2009.02.004
T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models—their training and application Computer Vision and Image Understanding. ,vol. 61, pp. 38- 59 ,(1995) , 10.1006/CVIU.1995.1004
J.S. Duncan, N. Ayache, Medical image analysis: progress over two decades and the challenges ahead IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 22, pp. 85- 106 ,(2000) , 10.1109/34.824822
Kang Li, Steven Millington, Xiaodong Wu, Danny Z. Chen, Milan Sonka, Simultaneous segmentation of multiple closed surfaces using optimal graph searching information processing in medical imaging. ,vol. 19, pp. 406- 417 ,(2005) , 10.1007/11505730_34
Mikko Lilja, Ville Vuorio, Kari Antila, Henri Setala, Jorma Jarnstedt, Mika Pollari, AUTOMATIC SEGMENTATION OF THE MANDIBLE FROM LIMITED-ANGLE DENTAL X-RAY TOMOGRAPHY RECONSTRUCTIONS international symposium on biomedical imaging. pp. 964- 967 ,(2007) , 10.1109/ISBI.2007.357014
D. Kainmueller, H. Lamecker, S. Zachow, H. Seim, M. Heller, H.-C. Hege, Automatic segmentation of the pelvic bones from CT data based on a statistical shape model visual computing for biomedicine. pp. 93- 100 ,(2008) , 10.2312/VCBM/VCBM08/093-100
S. Faisan, N. Passat, V. Noblet, R. Chabrier, J.-P. Armspach, C. Meyer, Segmentation of head bones in 3-D CT images from an example international symposium on biomedical imaging. pp. 81- 84 ,(2008) , 10.1109/ISBI.2008.4540937