Agrobacterium‐Mediated Genetic Transformation of Switchgrass

作者: M. N. Somleva , Z. Tomaszewski , B. V. Conger

DOI: 10.2135/CROPSCI2002.2080

关键词: Agrobacterium tumefaciensAcetosyringoneBiologyBialaphosAgrobacteriumPlantletTransformation (genetics)Somatic embryogenesisPhosphinothricin acetyltransferaseBotany

摘要: Although Agrobacterium tumefaciens has been successfully used to transfer genes a wide range of plant species, it received little attention for transformation forage grasses. Therefore, the objective present study was demonstrate Agrobacterium-mediated switchgrass (Panicum virgatum L.). The A. strain AGL 1 carrying binary vector pDM805, coding phosphinothricin acetyltransferase (bar) and β-glucuronidase (gus) genes, utilized in these experiments. Somatic embryos, embryogenic calluses, mature caryopses, plantlet segments served as target tissues infection. Treated cultures were selected presence 10 mg L -1 bialaphos resultant plantlets treated with herbicide Basta [monoammonium 2-amino-4(hydroxymethylphosphinyl)butanoate]. T-DNA delivery efficiency affected by genotype, explant or absence acetosyringone (3',5'-dimethoxy-4'-hydroxyacetophenone) during inoculation cocultivation. Approximately 600 transgenic plants produced, efficiencies ranged from 0 nearly 100%. Stable integration, expression, inheritance both transgenes confirmed molecular genetic analyses. 90% tested appeared have only one two copies inserts. Controlled crosses between To nontransgenic 'Alamo' indicated expected ratio 1:1 (transgenic:nontransgenic) T according X 2 test at P = 0.05. These results indicate that method is effective transferring foreign into switchgrass.

参考文章(36)
Ravindra N. Chibbar, Anne Repellin, Monica Båga, Prem P. Jauhar, Genetic enrichment of cereal crops via alien gene transfer: New challenges Plant Cell Tissue and Organ Culture. ,vol. 64, pp. 159- 183 ,(2001) , 10.1023/A:1010633510352
John W. Forster, Germán C. Spangenberg, Forage and Turf-Grass Biotechnology: Principles, Methods, and Prospects Springer, Boston, MA. pp. 191- 237 ,(1999) , 10.1007/978-1-4615-4707-5_10
P. D. Denchev, J. K. McDaniel, B. V. Conger, Transgenic Orchardgrass (Dactylis glomerata L.) Transgenic Crops I. pp. 151- 163 ,(2000) , 10.1007/978-3-642-59612-4_10
Li ZhongYi Li ZhongYi, NM Upadhyaya, S Meena, AJ Gibbs, PM Waterhouse, Comparison of promoters and selectable marker genes for use in Indica rice transformation Molecular Breeding. ,vol. 3, pp. 1- 14 ,(1997) , 10.1023/A:1009600219477
Curtis Jerry Nelson, Kenneth J. Moore, Robert F. Barnes, Michael Collins, An introduction to grassland agriculture Iowa State Press, a Blacwell Pub. Co.. ,(1995)
R. A. Jefferson, T. A. Kavanagh, M. W. Bevan, GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal. ,vol. 6, pp. 3901- 3907 ,(1987) , 10.1002/J.1460-2075.1987.TB02730.X
Narayana M. Upadhyaya, Brian Surin, Kerrie Ramm, Judy Gaudron, Petra H. D. Schünmann, William Taylor, Peter M. Waterhouse, Ming-Bo Wang, Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers Australian Journal of Plant Physiology. ,vol. 27, pp. 201- 210 ,(2000) , 10.1071/PP99078
D J Garfinkel, E W Nester, Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. Journal of Bacteriology. ,vol. 144, pp. 732- 743 ,(1980) , 10.1128/JB.144.2.732-743.1980
G.R. Wang, H. Binding, U.K. Posselt, Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam. Journal of Plant Physiology. ,vol. 151, pp. 83- 90 ,(1997) , 10.1016/S0176-1617(97)80041-7
M.A. Sanderson, R.L. Reed, S.B. McLaughlin, S.D. Wullschleger, B.V. Conger, D.J. Parrish, D.D. Wolf, C. Taliaferro, A.A. Hopkins, W.R. Ocumpaugh, M.A. Hussey, J.C. Read, C.R. Tischler, Switchgrass as a sustainable bioenergy crop Bioresource Technology. ,vol. 56, pp. 83- 93 ,(1996) , 10.1016/0960-8524(95)00176-X