A new method of recursive estimation in discrete linear systems

作者: R. Kashyap

DOI: 10.1109/TAC.1970.1099354

关键词: MathematicsLinear systemNoise (signal processing)Filter (signal processing)Signal processingCovarianceCovariance matrixSmoothingApplied mathematicsState (functional analysis)Mathematical optimization

摘要: Let the measurement z(i) at instant i be of form = y(i) + \eta(i) where is noise and signal obeying a system coupled linear difference equations. A method given for computing gains predictor filter corresponding state x(i) . The are computed recursively from previous without involving covariance matrix state. computational advantages scheme also discussed.

参考文章(9)
KJ Astrom, None, Computer control of a paper machine: an application of linear stochastic control theory Ibm Journal of Research and Development. ,vol. 11, pp. 389- 405 ,(1967) , 10.1147/RD.114.0389
M. S. Bartlett, H. Wold, A study in the analysis of stationary time series Biometrika. ,vol. 23, pp. 219- ,(1955) , 10.2307/1907883
H. Rauch, Solutions to the linear smoothing problem IEEE Transactions on Automatic Control. ,vol. 8, pp. 371- 372 ,(1963) , 10.1109/TAC.1963.1105600
James S. Meditch, Orthogonal Projection and Discrete Optimal Linear Smoothing SIAM Journal on Control. ,vol. 5, pp. 74- 89 ,(1967) , 10.1137/0305006
H. E. RAUCH, F. TUNG, C. T. STRIEBEL, Maximum likelihood estimates of linear dynamic systems AIAA Journal. ,vol. 3, pp. 1445- 1450 ,(1965) , 10.2514/3.3166
Tamer Basar, A New Approach to Linear Filtering and Prediction Problems Journal of Basic Engineering. ,vol. 82, pp. 35- 45 ,(1960) , 10.1115/1.3662552
Joseph L. Doob, Stochastic processes ,(1953)
G. M. Jenkins, P. Whittle, Prediction and Regulation. Journal of the Royal Statistical Society. Series A (General). ,vol. 128, pp. 140- ,(1965) , 10.2307/2343441
P. Whittle, Recursive Relations for Predictors of Non-Stationary Processes Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 27, pp. 523- 532 ,(1965) , 10.1111/J.2517-6161.1965.TB00612.X