Nonequilibrium statistical mechanical models for cytoskeletal assembly: towards understanding tensegrity in cells.

作者: Tongye Shen , Peter G. Wolynes

DOI: 10.1103/PHYSREVE.72.041927

关键词: PhysicsTensegrityBrownian motionStatistical physicsClassical mechanicsMaster equationPhase (matter)Stress (mechanics)Non-equilibrium thermodynamicsAdhesionElasticity (physics)

摘要: The cytoskeleton is not an equilibrium structure. To develop theoretical tools to investigate such nonequilibrium assemblies, we study a statistical physical model of motorized spherical particles. Though simple, it captures some the key features cytoskeletal networks. Variational solutions many-body master equation for set particles accounts their thermally induced Brownian motion as well kicking structural elements. These approximations yield stability limits crystalline phases and frozen amorphous structures. methods allow one compute effects behavior adhesion (effective cross-linking) on mechanical localized function density, strength, temperature. We find that noise does necessarily destabilize mechanically organized forces strongly modulate phase have comparable effect due cross-linking. Modeling transitions these allows properties rapidly adaptively change. present provides underpinning tensegrity picture cytoskeleton.

参考文章(37)
Hideaki Fujita, Shin’ichi Ishiwata, Spontaneous Oscillatory Contraction without Regulatory Proteins in Actin Filament-Reconstituted Fibers Biophysical Journal. ,vol. 75, pp. 1439- 1445 ,(1998) , 10.1016/S0006-3495(98)74062-7
D.F. Rosenbaum, C.F. Zukoski, Protein interactions and crystallization Journal of Crystal Growth. ,vol. 169, pp. 752- 758 ,(1996) , 10.1016/S0022-0248(96)00455-1
Hudong Chen, Shiyi Chen, Robert H. Kraichnan, Probability distribution of a stochastically advected scalar field. Physical Review Letters. ,vol. 63, pp. 2657- 2660 ,(1989) , 10.1103/PHYSREVLETT.63.2657
Hannes Risken, The Fokker-Planck equation ,(1984)
J. Bergenholtz, M. Fuchs, Nonergodicity transitions in colloidal suspensions with attractive interactions. Physical Review E. ,vol. 59, pp. 5706- 5715 ,(1999) , 10.1103/PHYSREVE.59.5706
N. R. Werthamer, Self-Consistent Phonon Formulation of Anharmonic Lattice Dynamics Physical Review B. ,vol. 1, pp. 572- 581 ,(1970) , 10.1103/PHYSREVB.1.572
N. Wang, K. Naruse, D. Stamenovic, J. J. Fredberg, S. M. Mijailovich, I. M. Tolic-Norrelykke, T. Polte, R. Mannix, D. E. Ingber, Mechanical behavior in living cells consistent with the tensegrity model Proceedings of the National Academy of Sciences of the United States of America. ,vol. 98, pp. 7765- 7770 ,(2001) , 10.1073/PNAS.141199598
Khoa N Pham, Antonio M Puertas, Johan Bergenholtz, Stefan Ulrich Egelhaaf, A Moussaıd, Peter N Pusey, Andrew B Schofield, Michael E Cates, Matthias Fuchs, Wilson CK Poon, Multiple Glassy States in a Simple Model System Science. ,vol. 296, pp. 104- 106 ,(2002) , 10.1126/SCIENCE.1068238
T. Shen, P. G. Wolynes, Stability and dynamics of crystals and glasses of motorized particles Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 8547- 8550 ,(2004) , 10.1073/PNAS.0402602101