Two-Level Multifactor Designs for Detecting the Presence of Interactions

作者: Max D. Morris , Toby J. Mitchell

DOI: 10.1080/00401706.1983.10487897

关键词: Lack-of-fit sum of squaresFractional factorial designOptimal designStatisticsOptimality criterionMathematicsOrthogonalitySensitivity (control systems)AlgorithmOrthogonal arrayEstimation theory

摘要: A design optimality criterion, tr (L)-optimality, is applied to the problem of designing two-level multifactor experiments detect presence interactions among controlled variables. We give rules for constructing (L)-optimal foldover designs and fractional factorial designs. Some results are given on power these testing hypothesis that there no two-factor interactions. Augmentation produces achieve a compromise between criteria D-optimality (for parameter estimation in first-order model) (L)-optimality detecting lack fit). an example demonstrate application sensitivity analysis computer model.

参考文章(18)
Max D. Morris, Toby J. Mitchell, Two-Level Multifactor Experiment Designs for Detecting the Presence of Interactions Defense Technical Information Center. ,(1980) , 10.21236/ADA093573
L.J. Ott, R.A. Hedrick, ORINC: a one-dimensional implicit approach to the inverse heat conduction problem. [PWR] NASA STI/Recon Technical Report N. ,vol. 78, pp. 21422- ,(1977) , 10.2172/5309988
Arthur Fries, William G. Hunter, Minimum Aberration 2 k–p Designs Technometrics. ,vol. 22, pp. 601- 608 ,(1980) , 10.1080/00401706.1980.10486210
Sidney Addelman, Statistics for experimenters ,(1978)
G. E. P. Box, J. S. Hunter, The 2 k-p fractional factorial designs part I Technometrics. ,vol. 42, pp. 28- 47 ,(2000) , 10.2307/1271430
G. E.P. Box, J. S. Hunter, The 2 k — p Fractional Factorial Designs Technometrics. ,vol. 3, pp. 311- 351 ,(1961) , 10.1080/00401706.1961.10489951
R. L. PLACKETT, J. P. BURMAN, THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS Biometrika. ,vol. 33, pp. 305- 325 ,(1946) , 10.1093/BIOMET/33.4.305
Toby J. Mitchell, Computer Construction of “D-Optimal” First-Order Designs Technometrics. ,vol. 16, pp. 211- 220 ,(1974) , 10.1080/00401706.1974.10489176