Learning Macroscopic Brain Connectomes via Group-Sparse Factorization

作者: Farzane Aminmansour , Andrew Patterson , Lei Le , Yisu Peng , Daniel Mitchell

DOI: 10.7939/R3-60G5-YM61

关键词: Artificial intelligenceRegular polygonComputer scienceMatching pursuitTensor (intrinsic definition)Pattern recognitionFactorizationGreedy algorithmConnectomeSparse approximation

摘要: Mapping structural brain connectomes for living human brains typically requires expert analysis and rule-based models on diffusion-weighted magnetic resonance imaging. A data-driven approach, however, could overcome limitations in such approaches improve precision mappings individuals. In this work, we explore a framework that facilitates applying learning algorithms to automatically extract connectomes. Using tensor encoding, design an objective with group-regularizer prefers biologically plausible fascicle structure. We show the is convex has unique solutions, ensuring identifiable individual. develop efficient optimization strategy extremely high-dimensional sparse problem, by reducing number of parameters using greedy algorithm designed specifically problem. significantly improves standard algorithm, called Orthogonal Matching Pursuit. conclude solutions found our method, showing can accurately reconstruct diffusion information while maintaining contiguous fascicles smooth direction changes.

参考文章(15)
Tamara G. Kolda, Brett W. Bader, Tensor Decompositions and Applications Siam Review. ,vol. 51, pp. 455- 500 ,(2009) , 10.1137/07070111X
Martin Ohlson, M. Rauf Ahmad, Dietrich von Rosen, The multilinear normal distribution: Introduction and some basic properties Journal of Multivariate Analysis. ,vol. 113, pp. 37- 47 ,(2013) , 10.1016/J.JMVA.2011.05.015
J.-Donald Tournier, Fernando Calamante, David G. Gadian, Alan Connelly, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution NeuroImage. ,vol. 23, pp. 1176- 1185 ,(2004) , 10.1016/J.NEUROIMAGE.2004.07.037
Franco Pestilli, Jason D Yeatman, Ariel Rokem, Kendrick N Kay, Brian A Wandell, Evaluation and statistical inference for human connectomes Nature Methods. ,vol. 11, pp. 1058- 1063 ,(2014) , 10.1038/NMETH.3098
Cesar F. Caiafa, Andrzej Cichocki, Computing sparse representations of multidimensional signals using kronecker bases Neural Computation. ,vol. 25, pp. 186- 220 ,(2013) , 10.1162/NECO_A_00385
Peter J. Ramadge, Hao Xu, Zhen J. Xiang, Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries neural information processing systems. ,vol. 24, pp. 900- 908 ,(2011)
Naoki Abe, Grzegorz Swirszcz, Aurelie C Lozano, Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction neural information processing systems. ,vol. 22, pp. 1150- 1158 ,(2009)