Hamiltonian and Gradient Flows, Algorithms and Control

作者:

DOI: 10.1090/FIC/003

关键词: Matrix (mathematics)Optimal controlMathematical analysisSolitonMaxima and minimaHamiltonian (control theory)Toda latticeConnection (mathematics)Variational principleMathematics

摘要: Resonant geometric phases for soliton equations by M. S. Alber and J. E. Marsden Schur flows orthogonal Hessenberg matrices G. Ammar W. B. Gragg Sub-Riemannian optimal control problems A. Bloch, P. Crouch, T. Ratiu Systems of hydrodynamic type, connected with the toda lattice Volterra model O. I. Bogoyavlenskii The double bracket equation as solution a variational problem R. Brockett Integration visualization matrix orbits on connection machine J.-P. Brunet A list applications T.-C. Chu Gibbs principle, gradient flows, interior-point methods L. Faybusovich Optimization techniques Riemannian manifolds Smith On number real roots sparse polynomial system Sturmfels Gradient local minima combinatorial optimization Wong.

参考文章(0)