作者: Michael Collins
关键词: Hidden Markov model 、 Artificial intelligence 、 Viterbi decoder 、 Maximum-entropy Markov model 、 Chunking (psychology) 、 Computer science 、 Machine learning 、 Viterbi algorithm 、 Discriminative model 、 Noun phrase 、 Iterative Viterbi decoding 、 Conditional random field 、 Pattern recognition 、 Perceptron 、 Algorithm 、 Structured prediction
摘要: We describe new algorithms for training tagging models, as an alternative to maximum-entropy models or conditional random fields (CRFs). The rely on Viterbi decoding of examples, combined with simple additive updates. theory justifying the through a modification proof convergence perceptron algorithm classification problems. give experimental results part-of-speech and base noun phrase chunking, in both cases showing improvements over tagger.