High-Order Non-Reflecting Boundary Conditions for the Linearized 2-D Euler Equations: No Mean Flow Case

作者: John R. Dea , Francis X. Giraldo , Beny Neta

DOI: 10.1016/J.WAVEMOTI.2008.11.002

关键词: MathematicsHigh orderDomain (mathematical analysis)Boundary value problemCoriolis forceMean flowEuler equationsFinite difference methodMathematical analysisFinite difference

摘要: Higdon-type non-reflecting boundary conditions (NRBCs) are developed for the 2-D linearized Euler equations with Coriolis forces. This implementation is applied to a simplified form of equations, NRBCs all four sides domain. We demonstrate validity high order. close list areas further research.

参考文章(30)
John C. Tannehill, Dale A. Anderson, Richard H. Pletcher, Computational Fluid mechanics and heat transfer - Second edition Taylor & Francis. ,(1997)
J Vincent, van Joolen, Application of Higdon non-reflecting boundary conditions to shallow water models Monterey, California. Naval Postgraduate School. ,(2003)
Fang Q Hu, A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables Journal of Computational Physics. ,vol. 173, pp. 455- 480 ,(2001) , 10.1006/JCPH.2001.6887
Robert L. Higdon, Radiation boundary conditions for elastic wave propagation SIAM Journal on Numerical Analysis. ,vol. 27, pp. 831- 869 ,(1990) , 10.1137/0727049
Bjorn Engquist, Andrew Majda, Absorbing boundary conditions for the numerical simulation of waves Mathematics of Computation. ,vol. 31, pp. 629- 651 ,(1977) , 10.1090/S0025-5718-1977-0436612-4
Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves Journal of Computational Physics. ,vol. 114, pp. 185- 200 ,(1994) , 10.1006/JCPH.1994.1159
Robert L Higdon, Absorbing boundary conditions for acoustic and elastic waves in stratified media Journal of Computational Physics. ,vol. 101, pp. 386- 418 ,(1992) , 10.1016/0021-9991(92)90016-R