作者: John R. Dea , Francis X. Giraldo , Beny Neta
DOI: 10.1016/J.WAVEMOTI.2008.11.002
关键词: Mathematics 、 High order 、 Domain (mathematical analysis) 、 Boundary value problem 、 Coriolis force 、 Mean flow 、 Euler equations 、 Finite difference method 、 Mathematical analysis 、 Finite difference
摘要: Higdon-type non-reflecting boundary conditions (NRBCs) are developed for the 2-D linearized Euler equations with Coriolis forces. This implementation is applied to a simplified form of equations, NRBCs all four sides domain. We demonstrate validity high order. close list areas further research.