Computable error bounds for variational functionals of solutions of a convolution integral equations of the first kind

作者: Edward F. Kuester

DOI: 10.1016/0165-2125(95)00020-J

关键词: MathematicsIntegral equationFredholm theoryApplied mathematicsVolterra integral equationFredholm integral equationMathematical analysisSimple (abstract algebra)A priori and a posteriori

摘要: Abstract Computable a posteriori bounds are derived for the error in variational functionals of approximate solutions convolutiontype Fredholm integral equations first kind which arise many areas applied mathematics. These illustrated simple problem, and extensions to more general situations also indicated.

参考文章(52)
Miloslav Feistauer, George C. Hsiao, Ralph E. Kleinman, Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations SIAM Journal on Numerical Analysis. ,vol. 33, pp. 666- 685 ,(1996) , 10.1137/0733034
James H. Wilkinson, Rounding Errors in Algebraic Processes ,(1964)
V.J. Ervin, N. Heuer, E.P. Stephan, On the h-p version of the boundary element method for Symm's integral equation on polygons Computer Methods in Applied Mechanics and Engineering. ,vol. 110, pp. 25- 38 ,(1993) , 10.1016/0045-7825(93)90017-R
L.M Delves, Round-off errors in variational calculations Journal of Computational Physics. ,vol. 3, pp. 17- 28 ,(1968) , 10.1016/0021-9991(68)90002-8
J. Mika, D. C. Pack, R. J. Cole, G. F. Roach, Optimal bounds for bilinear forms associated with linear equations Mathematical Methods in The Applied Sciences. ,vol. 7, pp. 518- 531 ,(1985) , 10.1002/MMA.1670070137
David W. Kammler, An Error Bound for Capacitance Calculations SIAM Journal on Numerical Analysis. ,vol. 6, pp. 254- 257 ,(1969) , 10.1137/0706023