Surface Tension‐Driven Flow in a Slender Wedge

作者: J. Billingham

DOI: 10.1137/05064655X

关键词: Mathematical analysisWedge (geometry)Similarity solutionScalingLambdaInviscid flowSurface tensionBounded functionFree surfaceMathematics

摘要: We consider an inviscid fluid, initially at rest inside a wedge, bounded by one free surface and solid surface. When $t=0$, we allow the contact angle to change discontinuously, which leads recoil under action of tension. As noted Keller Miksis [SIAM J. Appl. Math., 43 (1983), pp. 268–277], similarity scaling is available, with lengths like $t^{2/3}$. situation when wedge slender, $\epsilon \ll 1$, changes from e λe. The leading order asymptotic problem for $\lambda = O(1)$, pair nonlinear ordinary differential equations, was considered King [Quart. Mech. 44 (1991), 173–192], numerically O(1)$ asymptotically $|\lambda-1| 1$. In this paper, begin considering system $1 \lambda \epsilon^{-1}$, use Kuzmak’s method construct solution. =O(\epsilon^{-1})$, slope bec...

参考文章(21)
Joseph B. Keller, Paul A. Milewski, Jean-Marc Vanden-Broeck, Breaking and merging of liquid sheets and filaments Journal of Engineering Mathematics. ,vol. 42, pp. 283- 290 ,(2002) , 10.1023/A:1016127027751
Paul F. Byrd, Morris D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists ,(2014)
S. P. Decent, A. C. King, The Recoil of A Broken Liquid Bridge Springer, Dordrecht. pp. 81- 88 ,(2001) , 10.1007/978-94-010-0796-2_10
Joseph B. Keller, Paul A. Milewski, Jean-Marc Vanden-Broeck, Merging and wetting driven by surface tension European Journal of Mechanics B-fluids. ,vol. 19, pp. 491- 502 ,(2000) , 10.1016/S0997-7546(00)00135-7
R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow Journal of Fluid Mechanics. ,vol. 168, pp. 169- 194 ,(1986) , 10.1017/S0022112086000332
F. Jay Bourland, Richard Haberman, The Modulated Phase Shift for Strongly Nonlinear, Slowly Varying, and Weakly Damped Oscillators Siam Journal on Applied Mathematics. ,vol. 48, pp. 737- 748 ,(1988) , 10.1137/0148042
YULII D. SHIKHMURZAEV, Moving contact lines in liquid/liquid/solid systems Journal of Fluid Mechanics. ,vol. 334, pp. 211- 249 ,(1997) , 10.1017/S0022112096004569
G. D. Crapper, An exact solution for progressive capillary waves of arbitrary amplitude Journal of Fluid Mechanics. ,vol. 2, pp. 532- 540 ,(1957) , 10.1017/S0022112057000348
D. G. Crowdy, Exact Solutions for Steady Capillary Waves on a Fluid Annulus Journal of Nonlinear Science. ,vol. 9, pp. 615- 640 ,(1999) , 10.1007/S003329900080
R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants Journal of Fluid Mechanics. ,vol. 168, pp. 195- 220 ,(1986) , 10.1017/S0022112086000344