作者: D. Eardley , E. Liang , Rainer Sachs
DOI: 10.1063/1.1665859
关键词: Einstein tensor 、 Curvature 、 Gravitational singularity 、 Singularity 、 Riemann curvature tensor 、 Conformal map 、 Classical mechanics 、 Curvature form 、 Physics 、 Scalar (mathematics)
摘要: We consider irrotational dust solutions of the Einstein equations. define ``velocity‐dominated'' singularities these solutions. show that a velocity‐dominated singularity can be considered as three‐dimensional manifold with an invariantly and uniquely defined inner metric tensor, extrinsic curvature scalar bang time function. compute this structure for variety known exact models. The determines solution in certain class spatially inhomogeneous briefly discuss b boundary (Schmidt boundary). In appendix we generalize conformal transformations to ``stretch'' calculate form stretched metric.