From Flexible to Hard Polyurethane Aerogels: The Effect of Molecular Functionality vs. Molecular Rigidity

作者: Chakkaravarthy Chidambareswarapattar , Jared M Loebs , Zachary J Larimore , Patrick M McCarver , Autumn M Kosbar

DOI: 10.1557/OPL.2012.375

关键词: Mesoporous materialPolyurethanePolymer chemistryMaterials scienceNanoparticlePolymerAerogelDibutyltin dilaurateSolubilityMonomer

摘要: High performance all-polymer aerogels are not only interesting for their low thermal conductivity, but also mechanical strength and conversion to porous carbons. The prevalent design rule dictates that crosslinking at the monomer level decreases solubility of developing polymer induces phase separation nanoparticles with high surface volume ratios. Hence, hyperbranched structures based on trifunctional single aromatic core monomers should have enhanced interparticle connectivity rigidity compared those either difunctional or multiple monomers. That is applied here polyurethane (PU) synthesized from tris(4-isocyanatophenyl)methane ( TIPM ) 1,1,1-tris(4-hydroxyphenyl)ethane HPE in anhydrous acetone using dibutyltin dilaurate (DBTDL) as catalyst. resulting materials vary highly flexible rigid concentration increases. FTIR 13 C solid NMR confirm formation urethane. SEM shows variety macroporous a beaded worm-like structure, while mesoporous nanoparticulate. Lower-density (92%) area 132 m 2 g -1 , ones higher areas, up 256 . Polyurethane other triols diols, e.g., phloroglucinol POL resorcinol RES ), respectively, been studied similar concentrations shrinkage bulk density

参考文章(11)
Nicholas Leventis, Hongbing Lu, None, Polymer-Crosslinked Aerogels Aerogels Handbook. pp. 251- 285 ,(2011) , 10.1007/978-1-4419-7589-8_13
G. Biesmans, A. Mertens, L. Duffours, T. Woignier, J. Phalippou, Polyurethane based organic aerogels and their transformation into carbon aerogels Journal of Non-crystalline Solids. ,vol. 225, pp. 64- 68 ,(1998) , 10.1016/S0022-3093(98)00010-6
Chakkaravarthy Chidambareswarapattar, Zachary Larimore, Chariklia Sotiriou-Leventis, Joseph T. Mang, Nicholas Leventis, One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons Journal of Materials Chemistry. ,vol. 20, pp. 9666- 9678 ,(2010) , 10.1039/C0JM01844A
T. H. Mourey, S. R. Turner, M. Rubinstein, J. M. J. Frechet, C. J. Hawker, K. L. Wooley, Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers Macromolecules. ,vol. 25, pp. 2401- 2406 ,(1992) , 10.1021/MA00035A017
Alain C. Pierre, Gérard M. Pajonk, Chemistry of Aerogels and Their Applications Chemical Reviews. ,vol. 102, pp. 4243- 4265 ,(2002) , 10.1021/CR0101306
Huiyang Luo, Weinong Chen, Dynamic Compressive Response of Intact and Damaged AD995 Alumina International Journal of Applied Ceramic Technology. ,vol. 1, pp. 254- 260 ,(2005) , 10.1111/J.1744-7402.2004.TB00177.X
H. A. Smith, Catalysis of the formation of urethanes Journal of Applied Polymer Science. ,vol. 7, pp. 85- 95 ,(1963) , 10.1002/APP.1963.070070108
Simon J. McCarthy, Gordon F. Meijs, Natasha Mitchell, Pathiraja A. Gunatillake, Graeme Heath, Arthur Brandwood, Klaus Schindhelm, In-vivo degradation of polyurethanes: transmission-FTIR microscopic characterization of polyurethanes sectioned by cryomicrotomy Biomaterials. ,vol. 18, pp. 1387- 1409 ,(1997) , 10.1016/S0142-9612(97)00083-5
A. Rigacci, J.C. Marechal, M. Repoux, M. Moreno, P. Achard, Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation Journal of Non-crystalline Solids. ,vol. 350, pp. 372- 378 ,(2004) , 10.1016/J.JNONCRYSOL.2004.06.049
Nicholas Leventis, Chariklia Sotiriou-Leventis, Naveen Chandrasekaran, Sudhir Mulik, Zachary J. Larimore, Hongbing Lu, Gitogo Churu, Joseph T. Mang, Multifunctional Polyurea Aerogels from Isocyanates and Water. a Structure-property Case Study Chemistry of Materials. ,vol. 22, pp. 6692- 6710 ,(2010) , 10.1021/CM102891D