Defect structure in transition-metal monoxides.

作者: P. K. Khowash , D. E. Ellis

DOI: 10.1103/PHYSREVB.39.1908

关键词: Crystal structureVacancy defectMaterials scienceTransition metalCondensed matter physicsCrystallographic defectMetalLattice (order)Frenkel defectChemical physicsElectronic structure

摘要: The electronic structure and stabilization energy of metal vacancy vacancy-interstitial clusters are studied in transition-metal monoxides using the first-principles local-density theory. discrete-variational method embedded-cluster scheme is used to obtain both one-electron properties cohesive energies. Our calculations predict greater stability for 2:1 (vacancy:interstitial) defect over simple vacancies. This agreement with experiments MnO heavier 3d compounds, but TiO VO lattice vacancies at metallic or oxygen sites experimentally predominant. single calculated be close energy, so cluster-size effects computational limitations need considered further. For FeO CoO, however, 4:1 interstitial complex found more stable than other defects, accord experiment. probability formation their aggregates explored; ion tends a trivalent state as previously determined CoO.

参考文章(33)
M. R. Press, D. E. Ellis, Defect clusters in wustite Fe1-xO. Physical Review B. ,vol. 35, pp. 4438- 4454 ,(1987) , 10.1103/PHYSREVB.35.4438
P. K. Khowash, D. E. Ellis, Nature of defect structure in CoO Physical Review B. ,vol. 36, pp. 3394- 3399 ,(1987) , 10.1103/PHYSREVB.36.3394
L. F. Mattheiss, Electronic Structure of the 3d Transition-Metal Monoxides. II. Interpretation Physical Review B. ,vol. 5, pp. 306- 315 ,(1972) , 10.1103/PHYSREVB.5.306
Timothy M. Wilson, Spin‐Polarized Energy‐Band Structure of Antiferromagnetic MnO Journal of Applied Physics. ,vol. 40, pp. 1588- 1589 ,(1969) , 10.1063/1.1657784
T. Oguchi, K. Terakura, A. R. Williams, Band theory of the magnetic interaction in MnO, MnS, and NiO Physical Review B. ,vol. 28, pp. 6443- 6452 ,(1983) , 10.1103/PHYSREVB.28.6443
E.J. Baerends, D.E. Ellis, P. Ros, Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure principles and practice of constraint programming. ,vol. 2, pp. 41- 51 ,(1973) , 10.1016/0301-0104(73)80059-X
A. Rosén, D. E. Ellis, H. Adachi, F. W. Averill, Calculations of molecular ionization energies using a self‐consistent‐charge Hartree–Fock–Slater method Journal of Chemical Physics. ,vol. 65, pp. 3629- 3634 ,(1976) , 10.1063/1.433548
B. Delley, D. E. Ellis, Efficient and accurate expansion methods for molecules in local density models Journal of Chemical Physics. ,vol. 76, pp. 1949- 1960 ,(1982) , 10.1063/1.443168
B. Delley, D. E. Ellis, A. J. Freeman, E. J. Baerends, D. Post, Binding energy and electronic structure of small copper particles Physical Review B. ,vol. 27, pp. 2132- 2144 ,(1983) , 10.1103/PHYSREVB.27.2132
W. L. Roth, Defects in the crystal and magnetic structures of ferrous oxide Acta Crystallographica. ,vol. 13, pp. 140- 149 ,(1960) , 10.1107/S0365110X60000297