Smooth on-line learning algorithms for hidden Markov models

作者: Pierre Baldi , Yves Chauvin

DOI: 10.1162/NECO.1994.6.2.307

关键词: AlgorithmMathematicsPath (graph theory)Viterbi algorithmMarkov modelApproximation algorithmProbabilistic analysis of algorithmsRepresentation (mathematics)Hidden Markov modelWeighted Majority Algorithm

摘要: A simple learning algorithm for Hidden Markov Models (HMMs) is presented together with a number of variations. Unlike other classical algorithms such as the Baum-Welch algorithm, described are smooth and can be used on-line (after each example presentation) or in batch mode, without usual Viterbi most likely path approximation. The have expressions that result from using normalized-exponential representation HMM parameters. All proved to exact approximate gradient optimization respect likelihood, log-likelihood, cross-entropy functions, usually convergent. These also casted more general EM (Expectation-Maximization) framework where they viewed GEM (Generalized Expectation-Maximization) algorithms. mathematical properties derived appendix.

参考文章(16)
P. Baldi, Y. Chauvin, T. Hunkapiller, M. A. McClure, Hidden Markov models of biological primary sequence information Proceedings of the National Academy of Sciences of the United States of America. ,vol. 91, pp. 1059- 1063 ,(1994) , 10.1073/PNAS.91.3.1059
Shun-ichi Amari, Information geometry of the EM and em algorithms for neural networks Neural Networks. ,vol. 8, pp. 1379- 1408 ,(1995) , 10.1016/0893-6080(95)00003-8
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
PIERRE BALDI, YVES CHAUVIN, Hidden Markov Models of the G-protein-coupled receptor family. Journal of Computational Biology. ,vol. 1, pp. 311- 336 ,(1994) , 10.1089/CMB.1994.1.311
Frank G. Ball, John A. Rice, Stochastic models for ion channels: Introduction and bibliography Mathematical Biosciences. ,vol. 112, pp. 189- 206 ,(1992) , 10.1016/0025-5564(92)90023-P
D. Haussler, A. Krogh, I.S. Mian, K. Sjolander, Protein modeling using hidden Markov models: analysis of globins hawaii international conference on system sciences. pp. 792- 802 ,(1993) , 10.1109/HICSS.1993.270611
Anders Krogh, Michael Brown, I.Saira Mian, Kimmen Sjölander, David Haussler, HIDDEN MARKOV MODELS IN COMPUTATIONAL BIOLOGY: APPLICATIONS TO PROTEIN MODELING Journal of Molecular Biology. ,vol. 235, pp. 1501- 1531 ,(1993) , 10.1006/JMBI.1994.1104