Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function

作者: Kaarina Vuori , Ismo Strandén , Marja-Liisa Sevón-Aimonen , Esa A Mäntysaari

DOI: 10.1186/1297-9686-38-4-343

关键词: Taylor seriesGompertz functionLikelihood functionEstimationGrowth curve (statistics)Applied mathematicsSet (abstract data type)BiologyNonlinear systemLinearization

摘要: A method based on Taylor series expansion for estimation of location parameters and variance components non-linear mixed effects models was considered. An attractive property the is opportunity an easily implemented algorithm. Estimation can be done by common methods linear models, thus existing programs used after small modifications. The applicability this algorithm in animal breeding studied with simulation using a Gompertz function growth model pigs. Two data sets were analyzed: full set containing observations from entire growing period, truncated time trajectory animals slaughtered prematurely, which pig breeding. results 50 replicates indicate that linearization approach capable estimating original satisfactorily. However, related to adult weight becomes unstable case set.

参考文章(17)
Douglas M. Bates, Donald G. Watts, Relative Curvature Measures of Nonlinearity Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 42, pp. 1- 16 ,(1980) , 10.1111/J.2517-6161.1980.TB01094.X
José C. Pinheiro, Douglas M. Bates, Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model Journal of Computational and Graphical Statistics. ,vol. 4, pp. 12- 35 ,(1995) , 10.1080/10618600.1995.10474663
Anne Kettunen, Esa A. Mäntysaari, Jukka Pösö, Estimation of genetic parameters for daily milk yield of primiparous Ayrshire cows by random regression test-day models Livestock Production Science. ,vol. 66, pp. 251- 261 ,(2000) , 10.1016/S0301-6226(00)00166-4
David A. Harville, Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems Journal of the American Statistical Association. ,vol. 72, pp. 320- 338 ,(1977) , 10.1080/01621459.1977.10480998
Russell D. Wolfinger, Xihong Lin, Two Taylor-series approximation methods for nonlinear mixed models Computational Statistics & Data Analysis. ,vol. 25, pp. 465- 490 ,(1997) , 10.1016/S0167-9473(97)00012-1
Mary J. Lindstrom, Douglas M. Bates, Nonlinear Mixed Effects Models for Repeated Measures Data Biometrics. ,vol. 46, pp. 673- 687 ,(1990) , 10.2307/2532087
C. T. WHITTEMORE, D. M. GREEN, The description of the rate of protein and lipid growth in pigs in relation to live weight The Journal of Agricultural Science. ,vol. 138, pp. 415- 423 ,(2002) , 10.1017/S0021859602002186
N. E. Breslow, D. G. Clayton, Approximate inference in generalized linear mixed models Journal of the American Statistical Association. ,vol. 88, pp. 9- 25 ,(1993) , 10.1080/01621459.1993.10594284
I. Strandén, M. Lidauer, Solving large mixed linear models using preconditioned conjugate gradient iteration. Journal of Dairy Science. ,vol. 82, pp. 2779- 2787 ,(1999) , 10.3168/JDS.S0022-0302(99)75535-9
RUSS WOLFINGER, Laplace's approximation for nonlinear mixed models. Biometrika. ,vol. 80, pp. 791- 795 ,(1993) , 10.1093/BIOMET/80.4.791