Determination of rock depth using artificial intelligence techniques

作者: R. Viswanathan , Pijush Samui

DOI: 10.1016/J.GSF.2015.04.002

关键词: RegressionExtreme learning machineSupport vector machineGeologyArtificial intelligenceGeographic coordinate systemSpatial variabilityGround-penetrating radarPoint (geometry)Kriging

摘要: This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR), Least Square Support Vector Machine (LSSVM) and Extreme Learning (ELM), for prediction of rock depth (d) at any point in Chennai. GPR, ELM LSSVM have been used as regression techniques. Latitude longitude are also adopted inputs the models. The performance ELM, GPR models has compared. developed produce spatial variability offer robust depth.

参考文章(45)
María Navarro Cáceres, María Angélica González Arrieta, None, Automatic Prediction of Poisonous Mushrooms by Connectionist Systems distributed computing and artificial intelligence. pp. 341- 349 ,(2013) , 10.1007/978-3-319-00551-5_42
Jos De Brabanter, Tony Van Gestel, Joos Vandewalle, Bart De Moor, Johan A K Suykens, Least Squares Support Vector Machines ,(2002)
Erik H. Vanmarcke, Probabilistic Modeling of Soil Profiles Journal of Geotechnical and Geoenvironmental Engineering. ,vol. 103, pp. 1227- 1246 ,(1977) , 10.1061/AJGEB6.0000517
Wilson H. Tang, Probabilistic Evaluation of Penetration Resistances Journal of Geotechnical and Geoenvironmental Engineering. ,vol. 105, pp. 1173- 1191 ,(1979) , 10.1061/AJGEB6.0000865
J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers Neural Processing Letters. ,vol. 9, pp. 293- 300 ,(1999) , 10.1023/A:1018628609742
S. Sadri, D. H. Burn, Nonparametric methods for drought severity estimation at ungauged sites Water Resources Research. ,vol. 48, ,(2012) , 10.1029/2011WR011323
Tien H. Wu, Kinfun Wong, PROBABILISTIC SOIL EXPLORATION: CASE HISTORY Journal of Geotechnical and Geoenvironmental Engineering. ,vol. 107, pp. 1693- 1711 ,(1981) , 10.1061/AJGEB6.0001221
Sun Wen Du, Jin Zhang, Zeng Bing Deng, Jing Tao Li, A Novel Deformation Prediction Model for Mine Slope Surface Using Meteorological Factors Based on Kernel Extreme Learning Machine International Journal of Engineering Research in Africa. ,vol. 12, pp. 67- 81 ,(2014) , 10.4028/WWW.SCIENTIFIC.NET/JERA.12.67
C. H. Juang, T. Jiang, R. A. Christopher, Three-dimensional site characterisation: neural network approach Géotechnique. ,vol. 51, pp. 799- 809 ,(2001) , 10.1680/GEOT.2001.51.9.799