An Assessment of Fractal Characterization Methods for 1/f Processes with Application to the Analysis of Stride Interval Time Series

作者: Alexander Schaefer

DOI:

关键词: Interval (mathematics)Statistical physicsStatisticsFractal analysisSeries (mathematics)MathematicsSTRIDETime domainSelf-similarityWaveletFractal

摘要: The time evolution and complex interactions of many nonlinear systems, such as in the human body, result fractal types parameter outcomes that exhibit self similarity over long scales by a power law the frequency spectrum S(f) = 1/f. scaling exponent can be interpreted degree characteristic thus "biomarker" relative health decline. This thesis presents thorough numerical analysis characterization techniques with specific consideration given to experimentally measured gait stride interval series. ideal signals generated are constrained under varying lengths biases indicative range physiologically conceivable signals. is complement previous investigations characteristics healthy pathological series, which this study compared. comparative experimental applications provide basis for determining an appropriate robust method measuring comparing meaningful biomarker, spectral index. In constraints applications, significant drawbacks proposed domain methods noted, it concluded time-scale wavelet reasonably consistent accurate biomarker technique these

参考文章(50)
Joachim P. Sturmberg, Bruce J. West, Fractals in Physiology and Medicine Handbook of Systems and Complexity in Health. ,vol. 60, pp. 171- 192 ,(2013) , 10.1007/978-1-4614-4998-0_11
C.-K. Peng, S. Havlin, J.M. Hausdorff, J.E. Mietus, H.E. Stanley, A.L. Goldberger, Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease Journal of Electrocardiology. ,vol. 28, pp. 59- 65 ,(1995) , 10.1016/S0022-0736(95)80017-4
J. M. Hausdorff, P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, A. L. Goldberger, Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations Journal of Applied Physiology. ,vol. 80, pp. 1448- 1457 ,(1996) , 10.1152/JAPPL.1996.80.5.1448
R. W. Glenny, H. T. Robertson, S. Yamashiro, J. B. Bassingthwaighte, Applications of fractal analysis to physiology Journal of Applied Physiology. ,vol. 70, pp. 2351- 2367 ,(1991) , 10.1152/JAPPL.1991.70.6.2351
R. Lopes, N. Betrouni, Fractal and multifractal analysis: a review. Medical Image Analysis. ,vol. 13, pp. 634- 649 ,(2009) , 10.1016/J.MEDIA.2009.05.003
A. Arneodo, Y. d'Aubenton-Carafa, E. Bacry, P.V. Graves, J.F. Muzy, C. Thermes, Wavelet based fractal analysis of DNA sequences Physica D: Nonlinear Phenomena. ,vol. 96, pp. 291- 320 ,(1996) , 10.1016/0167-2789(96)00029-2
Ming Li, S. C. Lim, Power spectrum of generalized Cauchy process Telecommunication Systems. ,vol. 43, pp. 219- 222 ,(2010) , 10.1007/S11235-009-9209-2
James B. Bassingthwaighte, Richard P. Bever, Fractal correlation in heterogeneous systems Physica D: Nonlinear Phenomena. ,vol. 53, pp. 71- 84 ,(1991) , 10.1016/0167-2789(91)90165-6
Ingve Simonsen, Alex Hansen, Olav Magnar Nes, Determination of the Hurst exponent by use of wavelet transforms Physical Review E. ,vol. 58, pp. 2779- 2787 ,(1998) , 10.1103/PHYSREVE.58.2779