A Classification of Spikes and Plateaus

作者: Thomas Hillen

DOI: 10.1137/050632427

关键词: Mathematical and theoretical biologySpatial ecologyMathematical analysisScalar (mathematics)Cahn–Hilliard equationFourth orderPattern formationMaxima and minimaMathematicsReaction–diffusion system

摘要: In this paper we classify local maxima into spikes and plateaus. We give analytic definitions for plateaus in terms of a nonlocal gradient fourth order derivative. higher dimensions the Hesse matrix $\Delta f(x)$ is relevance. This classification applied to pattern formation models mathematical physics biology, including Cahn-Hilliard equations, chemotaxis reaction-diffusion Gierer-Meinhardt models, Gray-Scott models. show some these examples that stability spatial patterns depends on spike versus plateau type solution. prove, example, scalar equations any dimension cannot have stable steady states.

参考文章(10)
Kevin Painter, Thomas Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement Canadian Applied Mathematics Quarterly. ,vol. 10, pp. 501- 544 ,(2002)
J. K. Hale, L. A. Peletier, W. C. Troy, EXACT HOMOCLINIC AND HETEROCLINIC SOLUTIONS OF THE GRAY-SCOTT MODEL FOR AUTOCATALYSIS* Siam Journal on Applied Mathematics. ,vol. 61, pp. 102- 130 ,(2000) , 10.1137/S0036139998334913
Hans G. Othmer, Thomas Hillen, The Diffusion Limit of Transport Equations II: Chemotaxis Equations Siam Journal on Applied Mathematics. ,vol. 62, pp. 1222- 1250 ,(2002) , 10.1137/S0036139900382772
Thomas Hillen, Alex Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile Mathematical Methods in the Applied Sciences. ,vol. 27, pp. 1783- 1801 ,(2004) , 10.1002/MMA.569
Theodore Kolokolnikov, Wentao Sun, Michael Ward, Juncheng Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation Siam Journal on Applied Dynamical Systems. ,vol. 5, pp. 313- 363 ,(2006) , 10.1137/050635080
Nicholas Alikakos, Peter W. Bates, Giorgio Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension Journal of Differential Equations. ,vol. 90, pp. 81- 135 ,(1991) , 10.1016/0022-0396(91)90163-4
T. Hillen, K. Painter, Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding Advances in Applied Mathematics. ,vol. 26, pp. 280- 301 ,(2001) , 10.1006/AAMA.2001.0721
T. Hillen, , K. Painter, Christian Schmeiser, , , Global existence for chemotaxis with finite sampling radius Discrete and Continuous Dynamical Systems-series B. ,vol. 7, pp. 125- 144 ,(2006) , 10.3934/DCDSB.2007.7.125