作者: Thomas Hillen
DOI: 10.1137/050632427
关键词: Mathematical and theoretical biology 、 Spatial ecology 、 Mathematical analysis 、 Scalar (mathematics) 、 Cahn–Hilliard equation 、 Fourth order 、 Pattern formation 、 Maxima and minima 、 Mathematics 、 Reaction–diffusion system
摘要: In this paper we classify local maxima into spikes and plateaus. We give analytic definitions for plateaus in terms of a nonlocal gradient fourth order derivative. higher dimensions the Hesse matrix $\Delta f(x)$ is relevance. This classification applied to pattern formation models mathematical physics biology, including Cahn-Hilliard equations, chemotaxis reaction-diffusion Gierer-Meinhardt models, Gray-Scott models. show some these examples that stability spatial patterns depends on spike versus plateau type solution. prove, example, scalar equations any dimension cannot have stable steady states.