A review on intelligent sensory modelling

作者: HJ Tham , SY Tang , KTK Teo , SP Loh , None

DOI: 10.1088/1755-1315/36/1/012065

关键词: FactorialFuzzy logicSensory systemArtificial neural networkPrincipal component analysisMachine learningMultivariate statisticsArtificial intelligenceVaguenessComputer scienceQuality (business)

摘要: … Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. …

参考文章(43)
Dr Sarah E. Kemp, Dr Tracey Hollowood, Dr Joanne Hort, Sensory evaluation: a practical handbook. Sensory evaluation: a practical handbook.. ,(2009) , 10.1002/9781118688076
Harry T. Lawless, Hildegarde Heymann, Sensory Evaluation of Food Food Science Text Series. ,(2010) , 10.1007/978-1-4419-6488-5
Neelima Kaushik, Anusha Reddy Gondi, Rachna Rana, P. Srinivasa Rao, Application of fuzzy logic technique for sensory evaluation of high pressure processed mango pulp and litchi juice and its comparison to thermal treatment Innovative Food Science and Emerging Technologies. ,vol. 32, pp. 70- 78 ,(2015) , 10.1016/J.IFSET.2015.08.007
Yasuo Saito, Toshiharu Hatanaka, Katsuji Uosaki, Hidekazu Shigeto, Neural Network Application to Eggplant Classification international conference on knowledge-based and intelligent information and engineering systems. pp. 933- 940 ,(2003) , 10.1007/978-3-540-45226-3_128
Maryam Bahramparvar, Fakhreddin Salehi, Seyed M.A. Razavi, None, Predicting Total Acceptance of Ice Cream Using Artificial Neural Network Journal of Food Processing and Preservation. ,vol. 38, pp. 1080- 1088 ,(2014) , 10.1111/JFPP.12066
C. Cevoli, L. Cerretani, A. Gori, M.F. Caboni, T. Gallina Toschi, A. Fabbri, Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC–MS analysis of volatile compounds Food Chemistry. ,vol. 129, pp. 1315- 1319 ,(2011) , 10.1016/J.FOODCHEM.2011.05.126
S. Birle, M.A. Hussein, T. Becker, Fuzzy logic control and soft sensing applications in food and beverage processes Food Control. ,vol. 29, pp. 254- 269 ,(2013) , 10.1016/J.FOODCONT.2012.06.011
Raju Krishnamurthy, A.K. Srivastava, J.E. Paton, G.A. Bell, D.C. Levy, Prediction of consumer liking from trained sensory panel information: Evaluation of neural networks Food Quality and Preference. ,vol. 18, pp. 275- 285 ,(2007) , 10.1016/J.FOODQUAL.2006.01.001
A.G. da Cruz, E.H.M. Walter, R.S. Cadena, J.A.F. Faria, H.M.A. Bolini, A.M. Frattini Fileti, Monitoring the authenticity of low-fat yogurts by an artificial neural network Journal of Dairy Science. ,vol. 92, pp. 4797- 4804 ,(2009) , 10.3168/JDS.2009-2227
Xavier Cetó, Manuel Gutiérrez-Capitán, Daniel Calvo, Manel del Valle, Beer classification by means of a potentiometric electronic tongue. Food Chemistry. ,vol. 141, pp. 2533- 2540 ,(2013) , 10.1016/J.FOODCHEM.2013.05.091