Design Considerations for Generalized Predictive Controllers and Systems with Fractional Dead Time

作者: Christopher Domenic Cecchini

DOI: 10.1007/978-1-4614-3558-7_12

关键词: RingingMathematical analysisMathematicsInverseControl theoryModel predictive controlZero (complex analysis)Complex planeDead timePosition (vector)Unit circle

摘要: Non-integral dead time in computer-controlled systems causes a zero to be created on the real axis \( {\mathbf{z}} \)-plane, position of which can outside unit circle or near ringing pole \left( {{\text{z }} = \, - 1} \right). \) Generalized predictive control (GPC), under certain circumstances, uses an inverse plant model place closed-loop poles open loop zeros. Non-minimum phase and some with fractional have zeros that are pole. GPC, would positions result undesirable instability system. An analysis into effect GPC variables, gain is presented.

参考文章(6)
Katsuhiko Ogata, Discrete-time control systems (2nd ed.) Discrete-time control systems (2nd ed.). pp. 745- 745 ,(1995)
Katsuhiko Ogata, Discrete-time control systems ,(1987)
E. F. Camacho, C. Bordons, Generalized Predictive Control Springer, London. pp. 47- 79 ,(2007) , 10.1007/978-0-85729-398-5_4
D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Survey Constrained model predictive control: Stability and optimality Automatica. ,vol. 36, pp. 789- 814 ,(2000) , 10.1016/S0005-1098(99)00214-9
D.W. Clarke, C. Mohtadi, P.S. Tuffs, Generalized predictive control—Part I. The basic algorithm Automatica. ,vol. 23, pp. 137- 148 ,(1987) , 10.1016/0005-1098(87)90087-2
Jean-Pierre Richard, Time-delay systems: an overview of some recent advances and open problems Automatica. ,vol. 39, pp. 1667- 1694 ,(2003) , 10.1016/S0005-1098(03)00167-5