Biological redox cycling of iron in nontronite and its potential application in nitrate removal.

作者: Linduo Zhao , Hailiang Dong , Ravi K. Kukkadapu , Qiang Zeng , Richard E. Edelmann

DOI: 10.1021/ACS.EST.5B00131

关键词: NitrateShewanella putrefaciensElectron acceptorElectron donorInorganic chemistryNontroniteDissolutionChemistryBicarbonateRedox

摘要: Biological redox cycling of structural Fe in phyllosilicates is an important but poorly understood process. The objective this research was to study microbially mediated cycles nontronite (NAu-2). During the reduction phase, Fe(III) NAu-2 served as electron acceptor, lactate donor, AQDS shuttle, and dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32 mediator bicarbonate- PIPES-buffered media. oxidation biogenic Fe(II) donor nitrate acceptor. Nitrate-dependent Fe(II)-oxidizing Pseudogulbenkiania sp. strain 2002 added same For all three cycles, able reversibly undergo without significant dissolution. bioreduced samples occurred two distinct environments, at edges interior structure. Nitrate nitrogen gas coupled with ed...

参考文章(52)
B Krause, K H Nealson, Physiology and enzymology involved in denitrification by Shewanella putrefaciens. Applied and Environmental Microbiology. ,vol. 63, pp. 2613- 2618 ,(1997) , 10.1128/AEM.63.7.2613-2618.1997
Karrie A. Weber, Flynn W. Picardal, Eric E. Roden, Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environmental Science & Technology. ,vol. 35, pp. 1644- 1650 ,(2001) , 10.1021/ES0016598
Kangwon Lee, Joel E. Kostka, Joseph W. Stucki, COMPARISONS OF STRUCTURAL Fe REDUCTION IN SMECTITES BY BACTERIA AND DITHIONITE: AN INFRARED SPECTROSCOPIC STUDY Clays and Clay Minerals. ,vol. 54, pp. 195- 208 ,(2006) , 10.1346/CCMN.2006.0540205
Marco Blöthe, Eric E. Roden, Microbial iron redox cycling in a circumneutral-pH groundwater seep. Applied and Environmental Microbiology. ,vol. 75, pp. 468- 473 ,(2009) , 10.1128/AEM.01817-08
Michael V. Schaefer, Christopher A. Gorski, Michelle M. Scherer, Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. Environmental Science & Technology. ,vol. 45, pp. 540- 545 ,(2011) , 10.1021/ES102560M
Evgenya Shelobolina, Huifang Xu, Hiromi Konishi, Ravi Kukkadapu, Tao Wu, Marco Blöthe, Eric Roden, Microbial Lithotrophic Oxidation of Structural Fe(II) in Biotite Applied and Environmental Microbiology. ,vol. 78, pp. 5746- 5752 ,(2012) , 10.1128/AEM.01034-12
Joseph G. Lack, Swades K. Chaudhuri, Shelly D. Kelly, Kenneth M. Kemner, Susan M. O'Connor, John D. Coates, Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Applied and Environmental Microbiology. ,vol. 68, pp. 2704- 2710 ,(2002) , 10.1128/AEM.68.6.2704-2710.2002
D. R. Lovley, J. L. Fraga, E. L. Blunt-Harris, L. A. Hayes, E. J. P. Phillips, J. D. Coates, Humic Substances as a Mediator for Microbially Catalyzed Metal Reduction Acta hydrochimica et hydrobiologica. ,vol. 26, pp. 152- 157 ,(1998) , 10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
Joseph W. Stucki, A review of the effects of iron redox cycles on smectite properties Comptes Rendus Geoscience. ,vol. 343, pp. 199- 209 ,(2011) , 10.1016/J.CRTE.2010.10.008
Eric E. Roden, John M. Zachara, Microbial Reduction of Crystalline Iron(III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth Environmental Science & Technology. ,vol. 30, pp. 1618- 1628 ,(1996) , 10.1021/ES9506216