Radiomics based on artificial intelligence in liver diseases: where we are?

作者: Wenmo Hu , Huayu Yang , Haifeng Xu , Yilei Mao

DOI: 10.1093/GASTRO/GOAA011

关键词: RadiomicsArtificial intelligenceMachine learningRadiogenomicsMedicine

摘要: Radiomics uses computers to extract a large amount of information from different types images, form various quantifiable features, and select relevant features using artificial-intelligence algorithms build models, in order predict the outcomes clinical problems (such as diagnosis, treatment, prognosis, etc.). The study liver diseases by radiomics will contribute early diagnosis treatment improve survival cure rates diseases. This field is currently ascendant may have great development future. Therefore, we summarize progress current research this article then point out related deficiencies direction future research.

参考文章(40)
Meghan G. Lubner, Nicholas Stabo, Sam J. Lubner, Alejandro Munoz del Rio, Chihwa Song, Richard B. Halberg, Perry J. Pickhardt, CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes Abdominal Imaging. ,vol. 40, pp. 2331- 2337 ,(2015) , 10.1007/S00261-015-0438-4
Kheng-Choon Lim, Pierce Kah-Hoe Chow, John C. Allen, Ghim-Song Chia, Miaoshan Lim, Peng-Chung Cheow, Alexander Y.F. Chung, London L.P. Ooi, Say-Beng Tan, Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Annals of Surgery. ,vol. 254, pp. 108- 113 ,(2011) , 10.1097/SLA.0B013E31821AD884
Ronnie Tung-Ping Poon, Sheung-Tat Fan, Irene Oi-Lin Ng, Chung-Mau Lo, Chi-Leung Liu, John Wong, Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer. ,vol. 89, pp. 500- 507 ,(2000) , 10.1002/1097-0142(20000801)89:3<500::AID-CNCR4>3.0.CO;2-O
Dawn M. Torres, Christopher D. Williams, Stephen A. Harrison, Features, Diagnosis, and Treatment of Nonalcoholic Fatty Liver Disease Clinical Gastroenterology and Hepatology. ,vol. 10, pp. 837- 858 ,(2012) , 10.1016/J.CGH.2012.03.011
C-T Chou, R-C Chen, C-W Lee, C-J Ko, H-K Wu, Y-L Chen, Prediction of microvascular invasion of hepatocellular carcinoma by pre-operative CT imaging British Journal of Radiology. ,vol. 85, pp. 778- 783 ,(2012) , 10.1259/BJR/65897774
Aaron M. Rutman, Michael D. Kuo, Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging European Journal of Radiology. ,vol. 70, pp. 232- 241 ,(2009) , 10.1016/J.EJRAD.2009.01.050
Kin-Man Lai, Jiafu Ji, Sandrine Dudoit, Irene O.L. Ng, Matt van de Rijn, David Botstein, Patrick O. Brown, Xin Chen, Siu Tim Cheung, Samuel So, Sheung Tat Fan, Christopher Barry, John Higgins, Gene expression patterns in human liver cancers. Molecular Biology of the Cell. ,vol. 13, pp. 1929- 1939 ,(2002) , 10.1091/MBC.02-02-0023
A. Kassner, R.E. Thornhill, Texture analysis: a review of neurologic MR imaging applications. American Journal of Neuroradiology. ,vol. 31, pp. 809- 816 ,(2010) , 10.3174/AJNR.A2061
Philippe Lambin, Emmanuel Rios-Velazquez, Ralph Leijenaar, Sara Carvalho, Ruud G.P.M. van Stiphout, Patrick Granton, Catharina M.L. Zegers, Robert Gillies, Ronald Boellard, André Dekker, Hugo J.W.L. Aerts, Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer. ,vol. 48, pp. 441- 446 ,(2012) , 10.1016/J.EJCA.2011.11.036
Zobair M. Younossi, Maria Stepanova, Mariam Afendy, Yun Fang, Youssef Younossi, Hesham Mir, Manirath Srishord, Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clinical Gastroenterology and Hepatology. ,vol. 9, pp. 524- 530 ,(2011) , 10.1016/J.CGH.2011.03.020