An Overview of Low-Rank Matrix Recovery From Incomplete Observations

作者: Mark A. Davenport , Justin Romberg

DOI: 10.1109/JSTSP.2016.2539100

关键词: Non-negative matrix factorizationTheoretical computer scienceMatrix (mathematics)Field (computer science)Signal processingSparse matrixMatrix decompositionLow-rank approximationMathematicsContext (language use)

摘要: Low-rank matrices play a fundamental role in modeling and computational methods for signal processing and machine learning. In many applications where low-rank matrices …

参考文章(142)
Martin Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization international conference on machine learning. pp. 427- 435 ,(2013)
Akshay Soni, Swayambhoo Jain, Jarvis Haupt, Stefano Gonella, Noisy Matrix Completion under Sparse Factor Models arXiv: Machine Learning. ,(2014) , 10.1109/TIT.2016.2549040
Ameet Talwalkar, Mehryar Mohri, Sanjiv Kumar, Henry Rowley, Large-scale SVD and manifold learning Journal of Machine Learning Research. ,vol. 14, pp. 3129- 3152 ,(2013)
Roger A. Horn, Charles R. Johnson, Matrix Analysis Cambridge University Press. ,(1985) , 10.1017/CBO9780511810817
Karen Egiazarian, Patrizio Campisi, Blind image deconvolution: theory and applications CRC Press. ,(2007) , 10.1201/9781420007299
Yuejie Chi, Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization IEEE Journal of Selected Topics in Signal Processing. ,vol. 10, pp. 782- 794 ,(2016) , 10.1109/JSTSP.2016.2543462
Justin Romberg, Ali Ahmed, Compressive Sampling of Ensembles of Correlated Signals arXiv: Information Theory. ,(2015)
Nathan Srebro, Adi Shraibman, Rank, trace-norm and max-norm conference on learning theory. pp. 545- 560 ,(2005) , 10.1007/11503415_37
Leslie Hogben, Handbook Of Linear Algebra ,(2010)