Equivalent Constraints for Discrete Sets.

作者: R.R Meyer

DOI: 10.1016/0166-218X(79)90013-1

关键词: Applied mathematicsInteger programmingProbability distributionSet theoryMathematical analysisMathematicsLinear differential equationInteger (computer science)Nonlinear systemStability (learning theory)Special case

摘要: Abstract Two techniques are considered for “simplifying” constraints over discrete sets: (1) replacing real data by “equivalent” rational data, and (2) collapsing a system of linear or nonlinear equations into an single equation. Surprisingly, the procedure discussed first type simplification involves special case method presented condensing Such transformations not only computational interest, but also provide some interesting insights stability properties integer programs.

参考文章(7)
R. R. Meyer, J. M. Fleisher, Strong duality for a special class of integer programs Journal of Optimization Theory and Applications. ,vol. 22, pp. 25- 30 ,(1977) , 10.1007/BF00936716
G. B. Mathews, On the Partition of Numbers Proceedings of the London Mathematical Society. ,vol. s1-28, pp. 486- 490 ,(1896) , 10.1112/PLMS/S1-28.1.486
Fred Glover, Robert E. D. Woolsey, Aggregating diophantine equations Zeitschrift für Operations Research. ,vol. 16, pp. 1- 10 ,(1972) , 10.1007/BF01917186
Gordon H. Bradley, Transformation of integer programs to knapsack problems Discrete Mathematics. ,vol. 1, pp. 29- 45 ,(1971) , 10.1016/0012-365X(71)90005-7
Manfred W. Padberg, Equivalent knapsack-type formulations of bounded integer linear programs: An alternative approach Naval Research Logistics Quarterly. ,vol. 19, pp. 699- 708 ,(1972) , 10.1002/NAV.3800190410
R. R. Meyer, M. L. Wage, On the Polyhedrality of the Convex Hull of the Feasible Set of an Integer Program SIAM Journal on Control and Optimization. ,vol. 16, pp. 682- 687 ,(1978) , 10.1137/0316044
F. J. Gould, D. S. Rubin, Technical Note-Rationalizing Discrete Programs Operations Research. ,vol. 21, pp. 343- 345 ,(1973) , 10.1287/OPRE.21.1.343