Partitioning sparse rectangular matrices for parallel processing

作者: Tamara G. Kolda

DOI: 10.1007/BFB0018528

关键词: Parallel processing (DSP implementation)Adaptive algorithmMatrix (mathematics)Computer scienceMatrix decompositionMatrix calculusDiagonalizable matrixAlgorithmSpectral methodSymmetric matrixGraph partition

摘要: The authors are interested in partitioning sparse rectangular matrices for parallel processing. problem has been well-studied the square symmetric case, but received very little attention. They will formalize matrix and discuss several methods solving it. extend spectral method to case compare this three new -- alternating two hybrid methods. be shown best.

参考文章(22)
R. Leland, R. Van Driessche, B. Hendrickson, Skewed graph partitioning siam conference on parallel processing for scientific computing. ,(1997)
Bruce Hendrickson, Tamara G. Kolda, Partitioning Sparse Rectangular Matrices for Parallel Computations of Ax and ATv parallel computing. pp. 239- 247 ,(1998) , 10.1007/BFB0095342
B. Hendrickson, R. Leland, Multidimensional spectral load balancing ,(1996) , 10.2172/6691328
Miroslav Fiedler, Algebraic connectivity of graphs Czechoslovak Mathematical Journal. ,vol. 23, pp. 298- 305 ,(1973) , 10.21136/CMJ.1973.101168
Tamara G. Kolda, Limited-memory matrix methods with applications University of Maryland at College Park. ,(1997)
Bruce Hendrickson, Robert Leland, An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations SIAM Journal on Scientific Computing. ,vol. 16, pp. 452- 469 ,(1995) , 10.1137/0916028
Joseph E. Pasciak, Alan George, Joseph W. Liu, Computer solution of large sparse positive definite systems Mathematics of Computation. ,vol. 39, pp. 305- ,(1982) , 10.2307/2007640
Stephen T. Barnard, Horst D. Simon, Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems Concurrency and Computation: Practice and Experience. ,vol. 6, pp. 101- 117 ,(1994) , 10.1002/CPE.4330060203
Julie Falkner, Franz Rendl, Henry Wolkowicz, A computational study of graph partitioning Mathematical Programming. ,vol. 66, pp. 211- 239 ,(1994) , 10.1007/BF01581147