Induction of optimal semantic semi-distances for clausal knowledge bases

作者: Claudia d’Amato , Nicola Fanizzi , Floriana Esposito

DOI: 10.1007/978-3-540-78469-2_7

关键词: Computer scienceInductive reasoningSimilarity (psychology)Artificial intelligenceKnowledge baseNatural language processingCluster analysisInductive logic programmingMarkov logic networkConcept driftSet (abstract data type)

摘要: Several activities related to semantically annotated resources can be enabled by a notion of similarity, spanning from clustering retrieval, matchmaking and other forms inductive reasoning. We propose the definition family semi-distances over set objects in knowledge base which used these activities. In line works on distance-induction clausal spaces, is parameterized committee concepts expressed with clauses. Hence, we also present method based idea simulated annealing optimize choice best concept committee.

参考文章(19)
Gilles Bisson, Learning in FOL with a similarity measure national conference on artificial intelligence. pp. 82- 87 ,(1992)
Pavel Zezula, Michal Batko, Vlastislav Dohnal, Giuseppe Amato, Similarity Search: The Metric Space Approach (Advances in Database Systems) Springer-Verlag New York, Inc.. ,(2005)
Pavel Zezula, Giuseppe Amato, Michal Batko, Vlastislav Dohnal, Similarity Search: The Metric Space Approach ,(2005)
Shan-Hwei Nienhuys-Cheng, Distances and Limits on Herbrand Interpretations inductive logic programming. pp. 250- 260 ,(1998) , 10.1007/BFB0027329
Alan Hutchinson, Metrics on Terms and Clauses european conference on machine learning. pp. 138- 145 ,(1997) , 10.1007/3-540-62858-4_78
Nicola Di Mauro, Teresa Maria Altomare Basile, Stefano Ferilli, Floriana Esposito, Nicola Fanizzi, An Exhaustive Matching Procedure for the Improvement of Learning Efficiency inductive logic programming. pp. 112- 129 ,(2003) , 10.1007/978-3-540-39917-9_9
Werner Emde, Dietrich Wettschereck, Relational instance-based learning international conference on machine learning. pp. 122- 130 ,(1996)
Michèle Sebag, Distance Induction in First Order Logic inductive logic programming. pp. 264- 272 ,(1997) , 10.1007/3540635149_55
Jan Ramon, Maurice Bruynooghe, A Framework for Defining Distances Between First-Order Logic Objects inductive logic programming. ,vol. 1446, pp. 271- 280 ,(1998) , 10.1007/BFB0027331