A New Database for Drug Discovery Through Application of Data-Integration and Semantics

作者: Ole Kristian Ekseth , Jan Christian Meyer , Svein Olaf Hvasshovd

DOI: 10.1109/ICSC.2018.00080

关键词: Knowledge extractionDrug discoveryComputer scienceBioPAX : Biological Pathways ExchangeIdentification (information)CausationData integrationSemanticsDatabase

摘要: Biomedical databases are important in drug- discovery. Example applications are: disease-treatments, investi- gating side-effects of drugs, and identification similar research- efforts. A challenge construction biomedical concerns the complexities they describe: bio-medical data collected from a large number data-resources, where each data-resources targeted towards specific audience. What we observe is that current for semantic searches does not address needs Drug-discovery require multiple sources to be meaningfully unified/glued into database, ie, provide/give correct results complex queries. In practice established approaches ignore latter. Implication used drug-discovery. this paper latter issues. We present novel database which combines strategies model-unification 37 external databases, unwrapping BioPax formatted data-sets, data-normalization, inferences. From our empirical evaluation how approach captures effects causation pathways. Therefore provides support accurate Our new freely accessible through user-friendly search-interface at www.knittingTools.org.

参考文章(42)
W. Scott Campbell, Jay Pedersen, James C. McClay, Praveen Rao, Dhundy Bastola, James R. Campbell, An alternative database approach for management of SNOMED CT and improved patient data queries Journal of Biomedical Informatics. ,vol. 57, pp. 350- 357 ,(2015) , 10.1016/J.JBI.2015.08.016
Thomas G. Dietterich, Machine Learning for Sequential Data: A Review Lecture Notes in Computer Science. pp. 15- 30 ,(2002) , 10.1007/3-540-70659-3_2
Randi M. Sommerfelt, Astrid J. Feuerherm, Kymry Jones, Berit Johansen, Cytosolic Phospholipase A2 Regulates TNF-Induced Production of Joint Destructive Effectors in Synoviocytes PLoS ONE. ,vol. 8, pp. e83555- ,(2013) , 10.1371/JOURNAL.PONE.0083555
H. V. Jagadish, Frank Olken, Database management for life sciences research ACM SIGMOD Record. ,vol. 33, pp. 15- 20 ,(2004) , 10.1145/1024694.1024697
Anand Sharma, Vibhakar Mansotra, Emerging applications of data mining for healthcare management - A critical review international conference on computing for sustainable global development. pp. 377- 382 ,(2014) , 10.1109/INDIACOM.2014.6828163
Li Li, Christian J Stoeckert, David S Roos, OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research. ,vol. 13, pp. 2178- 2189 ,(2003) , 10.1101/GR.1224503
D. Croft, G. O'Kelly, G. Wu, R. Haw, M. Gillespie, L. Matthews, M. Caudy, P. Garapati, G. Gopinath, B. Jassal, S. Jupe, I. Kalatskaya, S. Mahajan, B. May, N. Ndegwa, E. Schmidt, V. Shamovsky, C. Yung, E. Birney, H. Hermjakob, P. D'Eustachio, L. Stein, Reactome: a database of reactions, pathways and biological processes Nucleic Acids Research. ,vol. 39, pp. 691- 697 ,(2011) , 10.1093/NAR/GKQ1018
Charles C.N. Wang, David A. Hecht, Phillip C-Y Sheu, Jeffrey J.P. Tsai, Semantic Computing and Drug Discovery - A Preliminary Report 2013 IEEE Seventh International Conference on Semantic Computing. pp. 453- 458 ,(2013) , 10.1109/ICSC.2013.86
Robert L. Grossman, Mark F. Hornick, Gregor Meyer, Data mining standards initiatives Communications of the ACM. ,vol. 45, pp. 59- 61 ,(2002) , 10.1145/545151.545180