Quick inference for log Gaussian Cox processes with non-stationary underlying random fields

作者: Samuel Soubeyrand , Tomáš Mrkvička , Jiří Dvořák , Jesper Møller

DOI: 10.1016/J.SPASTA.2019.100388

关键词: Function (mathematics)Covariance functionCox processRandom fieldParametric statisticsEstimation theoryGaussian random fieldStatistical physicsMathematicsGaussian

摘要: Abstract For point patterns observed in natura, spatial heterogeneity is more the rule than exception. In numerous applications, this can be mathematically handled by flexible class of log Gaussian Cox processes (LGCPs); brief, a LGCP process driven an underlying random field (log GRF). This allows representation aggregation, vacuum and intermediate situations, with or less rapid transitions between these different states depending on properties GRF. Very often, covariance function GRF assumed to stationary. article, we give two examples where sizes (that is, number points) extents clusters are allowed vary space. To tackle such features, propose parametric semiparametric models non-stationary LGCPs non-stationarity included both mean Thus, contrast most other work inhomogeneous LGCPs, second-order intensity-reweighted stationarity not satisfied usual step procedure for parameter estimation based e.g. composite likelihood does easily apply. Instead fast three composite likelihood. We apply our modelling framework analyse datasets dealing fish aggregation reservoir dispersal biological particles.

参考文章(41)
Tomáš Mrkvička, Mari Myllymäki, Ute Hahn, Multiple Monte Carlo testing, with applications in spatial point processes Statistics and Computing. ,vol. 27, pp. 1239- 1255 ,(2017) , 10.1007/S11222-016-9683-9
Jiancang Zhuang, Weighted likelihood estimators for point processes spatial statistics. ,vol. 14, pp. 166- 178 ,(2015) , 10.1016/J.SPASTA.2015.07.009
Rasmus Plenge Waagepetersen, Jesper Moller, Statistical Inference and Simulation for Spatial Point Processes ,(2003)
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
Yongtao Guan, A Composite Likelihood Approach in Fitting Spatial Point Process Models Journal of the American Statistical Association. ,vol. 101, pp. 1502- 1512 ,(2006) , 10.1198/016214506000000500
Ushio Tanaka, Yosihiko Ogata, Dietrich Stoyan, Parameter Estimation and Model Selection for Neyman-Scott Point Processes Biometrical Journal. ,vol. 50, pp. 43- 57 ,(2008) , 10.1002/BIMJ.200610339
Jesper Moller, Anne Randi Syversveen, Rasmus Plenge Waagepetersen, Log Gaussian Cox Processes Scandinavian Journal of Statistics. ,vol. 25, pp. 451- 482 ,(1998) , 10.1111/1467-9469.00115
Yongtao Guan, Ji Meng Loh, A Thinned Block Bootstrap Variance Estimation Procedure for Inhomogeneous Spatial Point Patterns Journal of the American Statistical Association. ,vol. 102, pp. 1377- 1386 ,(2007) , 10.1198/016214507000000879
Frederic Paik Schoenberg, Consistent Parametric Estimation of the Intensity of a Spatial-temporal Point Process Journal of Statistical Planning and Inference. ,vol. 128, pp. 79- 93 ,(2005) , 10.1016/J.JSPI.2003.09.027