Atomic-level description of protein-lipid interactions using an accelerated membrane model.

作者: Javier L. Baylon , Josh V. Vermaas , Melanie P. Muller , Mark J. Arcario , Taras V. Pogorelov

DOI: 10.1016/J.BBAMEM.2016.02.027

关键词: Peripheral membrane proteinMembrane transport proteinMembrane fluidityProtein structureMembraneNanotechnologyMembrane proteinChemistryBiophysicsLipid bilayerMolecular dynamics

摘要: Peripheral membrane proteins are structurally diverse that involved in fundamental cellular processes. Their activity of these is frequently modulated through their interaction with membranes, and as a result techniques to study the interfacial between peripheral high demand. Due fluid nature reversibility protein-membrane interactions, experimental systems remains challenging task. Molecular dynamics simulations offer suitable approach protein-lipid interactions; however, slow lipids often prevents sufficient sampling specific membrane-protein interactions atomistic simulations. To increase lipid while preserving detail highly mobile membrane-mimetic (HMMM) model core replaced by an organic solvent, short-tailed provide nearly complete representation natural at solvent/water interface. Here, we present brief introduction summary recent applications HMMM different proteins, complementing characterization presented systems, perspective future other classes proteins. This article part Special Issue entitled: Membrane edited J.C. Gumbart Sergei Noskov.

参考文章(183)
György Vereb, J Szöllősi, J Matko, P Nagy, T Farkas, LMLWTA Vigh, L Matyus, TA Waldmann, S Damjanovich, None, Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 8053- 8058 ,(2003) , 10.1073/PNAS.1332550100
B. Felding-Habermann, R. A. Lerner, A. Lillo, S. Zhuang, M. R. Weber, S. Arrues, C. Gao, S. Mao, A. Saven, K. D. Janda, Combinatorial antibody libraries from cancer patients yield ligand-mimetic Arg-Gly-Asp-containing immunoglobulins that inhibit breast cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 17210- 17215 ,(2004) , 10.1073/PNAS.0407869101
Themis Lazaridis, Effective energy function for proteins in lipid membranes Proteins. ,vol. 52, pp. 176- 192 ,(2003) , 10.1002/PROT.10410
D C Wiley, J J Skehel, The Structure and Function of the Hemagglutinin Membrane Glycoprotein of Influenza Virus Annual Review of Biochemistry. ,vol. 56, pp. 365- 394 ,(1987) , 10.1146/ANNUREV.BI.56.070187.002053
Wonhwa Cho, Robert V. Stahelin, Membrane-protein interactions in cell signaling and membrane trafficking. Annual Review of Biophysics and Biomolecular Structure. ,vol. 34, pp. 119- 151 ,(2005) , 10.1146/ANNUREV.BIOPHYS.33.110502.133337
Tobias S. Ulmer, Ad Bax, Nelson B. Cole, Robert L. Nussbaum, Structure and Dynamics of Micelle-bound Human α-Synuclein Journal of Biological Chemistry. ,vol. 280, pp. 9595- 9603 ,(2005) , 10.1074/JBC.M411805200
R.C. Liddington, M.H. Ginsberg, Integrin activation takes shape. Journal of Cell Biology. ,vol. 158, pp. 833- 839 ,(2002) , 10.1083/JCB.200206011
Kate L. Wegener, Anthony W. Partridge, Jaewon Han, Andrew R. Pickford, Robert C. Liddington, Mark H. Ginsberg, Iain D. Campbell, Structural Basis of Integrin Activation by Talin Cell. ,vol. 128, pp. 171- 182 ,(2007) , 10.1016/J.CELL.2006.10.048
Olivier Soubias, Walter E. Teague, Kirk G. Hines, Drake C. Mitchell, Klaus Gawrisch, Contribution of membrane elastic energy to rhodopsin function. Biophysical Journal. ,vol. 99, pp. 817- 824 ,(2010) , 10.1016/J.BPJ.2010.04.068
Jennifer A. Gruenke, R. Todd Armstrong, William W. Newcomb, Jay C. Brown, Judith M. White, New Insights into the Spring-Loaded Conformational Change of Influenza Virus Hemagglutinin Journal of Virology. ,vol. 76, pp. 4456- 4466 ,(2002) , 10.1128/JVI.76.9.4456-4466.2002