Monotone and nonmonotone trust-region-based algorithms for large scale unconstrained optimization problems

作者: María C. Maciel , María G. Mendonça , Adriana B. Verdiell

DOI: 10.1007/S10589-012-9477-8

关键词: Nonlinear programmingGeneralizationAlgorithmConvergence (routing)MathematicsTrust regionLine searchOptimization problemMonotone polygonMathematical optimizationGradient method

摘要: Two trust regions algorithms for unconstrained nonlinear optimization problems are presented: a monotone and nonmonotone one. Both of them solve the region subproblem by spectral projected gradient (SPG) method proposed Birgin, Martinez Raydan (in SIAM J. Optim. 10(4):1196---1211, 2000). SPG is algorithm solving large-scale convex-constrained problems. It combines classical with choice steplength line search strategy. The simplicity (only requires matrix-vector products, one projection per iteration) rapid convergence this scheme fits nicely globalization techniques based on philosophy, In trial step evaluated acceptance via rule which can be considered generalization well known fraction Cauchy decrease condition Grippo, Lampariello Lucidi Numer. Anal. 23:707---716, 1986). Convergence properties extensive numerical results presented. Our establish robustness efficiency new algorithms.

参考文章(28)
Nicholas I. M. Gould, Philippe L. Toint, Andrew R. Conn, Trust Region Methods ,(1987)
M.J.D. Powell, CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS Nonlinear Programming 2#R##N#Proceedings of the Special Interest Group on Mathematical Programming Symposium Conducted by the Computer Sciences Department at the University of Wisconsin–Madison, April 15–17, 1974. pp. 1- 27 ,(1975) , 10.1016/B978-0-12-468650-2.50005-5
Jorge J Moré, Recent Developments in Algorithms and Software for Trust Region Methods Mathematical Programming The State of the Art. pp. 258- 287 ,(1983) , 10.1007/978-3-642-68874-4_11
Ernesto G. Birgin, José Mario Martínez, Marcos Raydan, Nonmonotone Spectral Projected Gradient Methods on Convex Sets Siam Journal on Optimization. ,vol. 10, pp. 1196- 1211 ,(1999) , 10.1137/S1052623497330963
Ernesto G. Birgin, José Mario Martínez, Marcos Raydan, Algorithm 813 ACM Transactions on Mathematical Software. ,vol. 27, pp. 340- 349 ,(2001) , 10.1145/502800.502803
Wenyu Sun, Nonmonotone trust region method for solving optimization problems Applied Mathematics and Computation. ,vol. 156, pp. 159- 174 ,(2004) , 10.1016/J.AMC.2003.07.008
J.E. Dennis, Kathryn Turner, Generalized conjugate directions Linear Algebra and its Applications. ,vol. 88-89, pp. 187- 209 ,(1987) , 10.1016/0024-3795(87)90109-1
Jiangtao Mo, Chunyan Liu, Shicui Yan, A nonmonotone trust region method based on nonincreasing technique of weighted average of the successive function values Journal of Computational and Applied Mathematics. ,vol. 209, pp. 97- 108 ,(2007) , 10.1016/J.CAM.2006.10.070
Trond Steihaug, The Conjugate Gradient Method and Trust Regions in Large Scale Optimization SIAM Journal on Numerical Analysis. ,vol. 20, pp. 626- 637 ,(1983) , 10.1137/0720042
Z. -W. Chen, A Nonmonotone Trust Region Method for Nonlinear Programming with Simple Bound Constraints Applied Mathematics and Optimization. ,vol. 43, pp. 63- 85 ,(2001) , 10.1007/S002450010020