Preparation of core–shell structured metal–organic framework@PANI nanocomposite and its electrorheological properties

作者: Qingkun Wen , Lili Ma , Chengwei Wang , Baoxiang Wang , Rongjiang Han

DOI: 10.1039/C9RA02268F

关键词: Scanning electron microscopePowder diffractionTransmission electron microscopyNanocompositeSilicone oilMaterials sciencePolyanilineCoatingChemical engineeringComposite number

摘要: A novel core–shell-type electrorheological (ER) composite material was fabricated via using polyaniline as an insulating layer to the outer surface of core conductive metal–organic framework (MIL-125) with controlled size and morphology. MIL-125 firstly synthesized by a solvothermal method, then in polar solvent tight coating successfully achieved form MIL-125@PANI core–shell nanocomposite. This structure greatly enhances polarization ability dispersed particles, thereby improving their rheological properties. The morphology pure has been characterized transmission electron microscopy (TEM) scanning (SEM). Their X-ray powder diffraction. Moreover, ER activity MIL-125-based MIL-125@PANI-based fluids dispersing particles into silicone oil studied rotational rheometer. results show that have higher

参考文章(55)
Yuezhen Dong, Yang Liu, Jianbo Yin, Xiaopeng Zhao, Preparation and enhanced electro-responsive characteristic of graphene/layered double-hydroxide composite dielectric nanoplates Journal of Materials Chemistry C. ,vol. 2, pp. 10386- 10394 ,(2014) , 10.1039/C4TC02085E
Sunil Kumar Boda, Greeshma Thrivikraman, Bikramjit Basu, Magnetic field assisted stem cell differentiation – role of substrate magnetization in osteogenesis Journal of Materials Chemistry B. ,vol. 3, pp. 3150- 3168 ,(2015) , 10.1039/C5TB00118H
H.C Yang, Y.T Chou, Strain energy of 〈111〉 slit cracks in cubic crystals Materials Science and Engineering. ,vol. 17, pp. 57- 62 ,(1975) , 10.1016/0025-5416(75)90030-0
Min S. Cho, Yun H. Cho, Hyoung J. Choi, Myung S. Jhon, Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: Size effect Langmuir. ,vol. 19, pp. 5875- 5881 ,(2003) , 10.1021/LA026969D
Yuezhen Dong, Jianbo Yin, Xiaopeng Zhao, Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity Journal of Materials Chemistry. ,vol. 2, pp. 9812- 9819 ,(2014) , 10.1039/C4TA00828F
Jinghua Wu, Ting Jin, Fenghua Liu, Jianjun Guo, Yuchuan Cheng, Gaojie Xu, Formamide-modified titanium oxide nanoparticles with high electrorheological activity RSC Advances. ,vol. 4, pp. 29622- 29628 ,(2014) , 10.1039/C4RA04469J
M. Sedlacik, V. Pavlinek, M. Mrlik, Z. Morávková, M. Hajná, M. Trchová, J. Stejskal, Electrorheology of polyaniline, carbonized polyaniline, and their core–shell composites Materials Letters. ,vol. 101, pp. 90- 92 ,(2013) , 10.1016/J.MATLET.2013.03.084
Nico F. A. van der Vegt, Weijia Wen, Ping Sheng, Shuyu Chen, Xianxiang Huang, Giant electrorheological effect: a microscopic mechanism. Physical Review Letters. ,vol. 105, pp. 046001- ,(2010) , 10.1103/PHYSREVLETT.105.046001
M. Sedlačík, M. Mrlík, V. Pavlínek, P. Sáha, O. Quadrat, Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles Colloid and Polymer Science. ,vol. 290, pp. 41- 48 ,(2012) , 10.1007/S00396-011-2521-X